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Abstract

An abdominal aortic aneurysm (AAA) is an enlargement of the abdominal
aorta. If an AAA ruptures, it leads to death in 48.5% to 81% of the cases.
Detection and monitoring of AAAs is therefore vital and is currently per-
formed by a trained sonographer at a hospital. A general practitioner is not
able to perform an ultrasound, since it requires months of training. In this
study, we present a method based on deep learning to automatically detect
an aorta from ultrasound (US) imaging and to automatically measure the
aortic diameter, so untrained people would be able to measure the aortic
diameter without extensive training. The method consists of two steps. In
the first step, a deep learning model with a U-Net architecture segments the
aorta for each acquired US frame. In the second step, connected-component
labeling (CCL) is used to find the segmented aorta, and a direct least-squares
ellipse fit is performed to measure the aortic diameter. Data from 100 pa-
tients was acquired. A handheld US device was used to make an axial sweep
of 7 seconds from the xiphoid process up until the umbilicus. Data of 80
patients was used to train the algorithms. 20 patients were used as a test set
which showed a median Dice of 0.88 (IQR = 0.78 - 0.92). The segmentation
model was included into a smartphone application, which was used to acquire
data from 44 additional patients which also received a computed tomography
(CT) as ground truth. The results show that the CT-US maximum diameter
differences had a median of 6.0 mm (IQR = 4.0 - 9.6 mm) and 73.8% of the
measurements fell within within the clinically acceptable limits of agreement
of + 5 mm.

1 Introduction

An abdominal aortic aneurysm (AAA) is a localized enlargement of the ab-
dominal aorta. An AAA is defined as having an abdominal aortic diameter

larger than 3.0 cm [17]. In a patient with an AAA there is a 9.4% to 32.5%
chance that the aorta may rupture, depending on its size [17]. The mortality
rate from a ruptured AAA lies between 48.5% and 81% [28, 9]. Therefore

early detection and monitoring is crucial. Most studies show that men at the
age of 65 have an increased chance of having an AAA. The overall prevalence
of AAAs in the general population is 6.0% for men and 1.6% in women [19)].



Before the age of 55-65 years the prevalence is negligible, and afterwards the
prevalence increases steadily with age [31]. When an AAA is detected it
needs to be monitored. The monitoring interval is determined by the size
of the AAA. Safe surveillance intervals have been established at every three
years for small aneurysms (3-3.9 cm in diameter), annually for aneurysms
4.0-4.9 cm, and every 3-6 months for > 5.0 cm [17]. Intervention policies
such as AAA repair are recommended for men when the diameter is > 5.5
cm, while for women they may be considered when the diameter is > 5.0 cm
[47].

Ultrasound imaging is a widely used method for detection and monitoring
of AAA that is performed by trained sonographers. US is relatively safe
and has a noninvasive nature. The sonographer can use US to measure
the diameter of the aorta. US devices have recently become cheaper and
more portable. Hand-held devices such as the MicrUs Pro C60S (Telemed,
Lithuania) can be connected to the PC, tablet and smartphone. This makes
them accessible to more users, including primary care physicians. The use of
portable US devices to do an examination at a patient’s bedside is referred
to as point-of-care US (POCUS) [27].

Computer vision is the field that focuses on automatically extracting use-
ful information from images. In this work, it is attempted to apply computer
vision to US images, specifically by using deep learning. Deep learning is
the approach of using a neural network that contains layers that are built on
top of each other. If visual features are encoded within a layer, a hierarchy
of features allows the model to represent complex features by building them
out of simpler ones. This approach has shown great success for applications
in image analysis and computer vision [16, 14, 35, 8]. Similarly, deep learn-
ing has also been applied to the medical imaging domain. The main tasks
of segmentation (finding the outline of an object in an image) and classi-
fication from US imaging have been widely applied to different anatomical
structures, such as the breast, prostate, liver, heart, brain and more [20, 21].
Van den Heuvel et al. [11] combined the use of low-cost, point-of-care ultra-
sound equipment and deep learning for the automated detection of fetal risk
factors. This system was deployed on a smartphone and could be used by
healthcare workers within a few hours of training [10].

To the author’s knowledge there are no published works on automatic
AAA detection from POCUS imaging by using deep learning in the literature.
However, more traditional methods have been used in the past. In 1996,
Vorp et al. [10] demonstrated the use of an automated border detection
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algorithm to locate the AAA region with the largest diameter. However, this
algorithm relies tissue back-scatter data and can not be used independent
of the ultrasound machine. Van Essen et al. [11] used a minimum-cost
algorithm to detect changes in the echo intensity corresponding to boundaries
of arterial structures, but this method requires the use of a 3-dimensional
(3D) intravascular ultrasound system. Rouet et al. [30], Lopata et al. [24]
and Long et al. [22] all performed semi-automatic segmentation with image
kernels, and automatic selection of the maximum diameter by performing
least-squares fitting of an ellipse. The limitation of these methods is that
they are semi-automatic. Lastly, van Disseldorp et al. [12, 13] used an active
contour model for automatic segmentation, but this method relies on the
use of a 3D ultrasound system. None of the above methods are both fully
automatic and can be performed on 2-dimensional (2D) ultrasound images.
Deep learning is fully automatic and can be performed on individual 2D
US images, which makes it suitable for POCUS. Abdominal aortas can have
varying features, such as shape, size, contrast and location. Additionally, the
algorithm needs to be able to differentiate the aorta from other arteries and
veins. To deal with the complexities of this task, deep learning was chosen
as opposed to traditional computer vision method.

In this study we present a deep-learning method for automatic detection
and measurement of the abdominal aorta from ultrasound imaging obtained
by using a hand-held scanner. We optimized this method for efficiency, such
that it could perform real-time inference on a smartphone. This enables
users, e.g. a general practitioner, to use it at the point-of-care outside of the
hospital in the future. The main contribution of this work is to show the
feasibility of a method that automatically measures the aortic diameter of a
patient.

2 Data

2.1 Data acquisition

Two datasets were acquired. In dataset 1, a total of 100 patients were in-
cluded. In dataset 2, a total of 44 patients were included. The patients who
were included were all scheduled for a CT scan at the Radboud university
medical center, Nijmegen, the Netherlands. All patients signed a written
informed consent prior to inclusion. The collection of the data used in this



study was approved by the local ethics committee. All included patients
received a CT scan of the abdominal area. After the CT scan the patient
directly received an ultrasound scan on the bed of the CT scanner using the
MicrUs Pro C60S (Telemed, Lithuania). The MicrUs Pro C60S was con-
nected to a smartphone.

For dataset 1, we set out to evaluate a standardized scanning protocol
that could be used by non-specialists with no prior training in sonography.
Scanning was performed by the author of this thesis, having no prior ex-
perience in sonography. The acquisition protocol consists of one predefined
sweep over the abdomen of the patient from the xiphoid process up until the
umbilicus. The sweep was performed in the axial plane. During a sweep,
the ultrasound device recorded at 20 frames per second. The smartphone
provided an indicator bar to show the connectivity between the transducer
and the skin. US images were not shown, so there was no visual feedback
during a scan. This sweep was performed within a duration of 7-9 seconds.

For dataset 2, two consecutive acquisitions were made. The first acqui-
sition was exactly the same as the acquisition for dataset 1. The second
acquisition included the display of the segmentation by the deep-learning
model that was developed using dataset 1 and implemented on the smart-
phone (Figure 1). The aim of the second acquisition was to provide guidance
during the sweep, in order to investigate whether this improved the image
quality. The second acquisition had a maximum duration of 30 seconds, but
recording could be stopped earlier when the user determined when the ac-
quisition was completed. During this acquisition the user scanned along the
same path as the first acquisition. During the second acquisition, it was at-
tempted to use the segmentation and the ultrasound image as aids to follow
the aorta accurately and to aim for the best possible scan quality.



Figure 1: Left: US image for segmentation. Right: segmentation in real-time
by the deep-learning model in the second acquisition. The aorta is identified
by the green outline.

2.2 Beam-forming

To form a US image, sound waves are transmitted by the US transducer into
the bodily tissue. The waves are then reflected back and recorded by the
transducer. The waves weaken as they travel through tissue, a phenomenon
known as attenuation. B-mode (brightness mode) is the most common ultra-
sound mode that displays a two-dimensional image where the brightness of
each dot reflects the amplitude of the sound wave that is returned. The Mi-
crUs Pro C60S transducer uses a 64-element array to send and receive sound
waves. The process to convert the received data to the B-mode image is
called beam-forming. Within this study we used the standard beam-forming
of the MicrUs Pro C60S.

2.3 Annotation

The author of this thesis annotated the surfaces of the aortas in each frame.
The aorta was annotated by including the outer aortic wall, which corre-
sponds to the outer-to-outer method when measuring the AP diameter (Fig-
ure 2). Delineation of the lateral aortic wall is less precise in ultrasound,
which is also evidenced by transverse diameter measurements being less ac-
curate than AP diameter measurements [3]. Therefore, the annotations were
made as wide as possible in the lateral direction.



Figure 2: An ultrasound frame which indicates the outer-to-outer (OTO)
measurement between the outer layers of the aortic wall, inner-to-inner (ITT)
measurement between the inner layers of the aortic wall, and leading edge-
to-leading edge (LELE) measurement between the outer layer of the anterior
wall and the inner layer of the posterior wall.

The annotation started at the first frame in which the aorta was clearly
visible. This means the complete aortic wall could be observed. After
that, the aorta was annotated one in every five frames. The annotation
was stopped at the last clear instance of the aorta. A margin of 10 frames
was added before the first and after the last annotated frame. In the frames
in the margins the aorta could still be distinguished by a human, but the aor-
tic walls were not not clearly visible. Because the deep learning algorithms
should not be punished for detecting the aorta in these frames, they were not
included in the training data. Outside the margins, the aorta is not distin-
guishable anymore. This range of annotations, including the margins, defines
a positive range. The aorta could reappear further on in the scan depending
on the scan quality. Therefore this process was repeated until all ranges with
positive frames were annotated. A total of 16432 frames were acquired from
100 patients. A total of 4027 frames were identified as positive frames and
12405 were identified as negative frames. Out of the positive frames, 549
were annotated. Annotations were made using grand-challenge.org [15].


grand-challenge.org

2.4 Pre-processing

The pixel values of input images and their corresponding segmentation maps
were rescaled from the range [0,255] to [0, 1]. This was done with min-max
scaling given by the formula:
X — Tmin
Xnew - 1

Tmaz — Tmin ( )
where X is a 2D matrix representing an input image, x,,;, is the minimum
value in the matrix, and x,,,, is the maximum value in the matrix. Because
the original values were in the range [0,255], scaling was simply done by
dividing the pixel values by 255.

2.5 CT references

Each included patient received both a US scan and a CT scan. In order to
compare the US with the CT, the aorta was segmented in the C'T scans with
an nnUNet [10]. The nnUNet was pre-trained on the abdomen segmentation
task of the MICCAI2015 challenge “Multi-Atlas Labeling Beyond the Cranial
Vault” [15].

For each CT scan, a starting point was selected at the umbilicus, and an
end point was selected at the xiphoid process. Over this region the aortic
diameter will be extracted, in order to be compared with the diameters from
US scans.

It is known from the literature that aortic maximum diameter measure-
ments from CT are significantly larger compared to US by 4.2 - 9.6 mm
difference [25, 18, 38].

The quality of the segmentations was manually evaluated to ensure that
they were correct. In dataset 2 there were two cases in which nnUNet failed
segmentation. 42 cases were correctly segmented and were used for further
analysis.

3 Methods

3.1 Segmentation model

Segmentation on the US scans was performed with a fully convolutional neu-
ral network based on the U-Net implementation of Ronneberger et al. [29].



This implementation was chosen because it remains a state-of-the-art archi-
tecture for segmentation problems, and it is often successful for US applica-
tions [31]. The U-Net architecture can be described as an encoder-decoder
architecture. The decoder consists of a series of two convolutions, a rectified
linear unit (ReLU) and a max pool operation (the contracting path). The en-
coder consists of a series of an up-convolution, two convolutions and a ReLLU
(the extending path). At every step the contracting and expanding paths
are connected by skip connections. The final layer is a sigmoid activation
layer, which returns for every pixel the probability that a pixel belongs to
the foreground. In our implementation we made two adjustments compared
to the U-net implementation of Ronneberger et al. We used padded convolu-
tions instead of unpadded convolutions and we varied the number of model
channels at the first step in the contracting path. Padded convolutions were
used to retain the size of the input, and to preserve border information of
the input image.

3.1.1 Model channels

The number of feature channels is doubled after each max pool layer in
the network. The number of model channels in the first convolutional layer
(referred to in this work as model channels) therefore determine the total
number of parameters in the model. In the standard U-Net model there are
64 channels in the first layer. Decreasing the number of model channels lowers
the model’s complexity and avoids overparameterization. In our optimization
experiment we examined model combinations with 64, 32, 16 and 8 model
channels respectively.

3.1.2 Downsampling

The input images were downsampled at different rates. Downsampling offers
the advantage that it reduces the number of parameters in the network, and
therefore also the computation time and memory cost. This is required to
be able to run the model on a smartphone. Additionally, pooling produces
invariance to small translations in the image [5]. Because each max pool op-
eration in the network halves the size of the input image, the input image size
needs to be divisible by 2", where n is the number of steps in the contracting
path. In the standard implementation there are 4 steps, so the image sizes
were chosen such that they were divisible by 16. Downsampling was done at



a factor of 1 (original, 752 x 576 pixels), 2 (384 x 288 pixels), 4 (192 x 144
pixels), 6 (128 x 96 pixels) and 8 (96 x 80 pixels).

Annotations were resized using nearest-neighbor interpolation such that
they matched the size of the input.

3.1.3 3D input

An additional experiment was set up to train a model with three-dimensional
(3D) input as opposed to using two-dimensional (2D) frames as input. The
motivation behind this is that when humans evaluate a scan, they look at
multiple successive frames to determine where the aorta is present. Therefore,
this additional information might also help the network to generalize better.

The 3D input consisted of the current 2D frame and the preceding three
frames. As a result, each input image has four channels. An alternative
option would be to add surrounding frames to the current frame, but this
option was not explored in this work due to time constrains. The 2D model on
the downsampling factor and selected model channels that gave the highest
performance on the validation set was retrained with this 3D input.

This method takes in account 3D information, but it is not the same as
volumetric segmentation. V-Net [20] is an instance of an architecture for
volumetric segmentation by using 3D convolutions. The advantage of the
method we use is that it is not as computationally expensive, and it does not
require modifications to the U-Net architecture. Additionally, U-Net can be
used on the smartphone for real-time inference, whereas V-Net would require
the whole US scan volume as input. An advantage of V-Net could be that it
interpolates better between segmentations of the aorta, because it considers
the whole volume at once. A V-Net model could then be used for off-line
inference.

3.1.4 Training and evaluation

The data of dataset 1 was partitioned in five folds of 20 patients, such that
the percentages of positive and negative frames and the number of annotated
frames were approximately equal in each fold. Non-nested cross-validation
was applied for all experiments. All networks were trained using a four-fold
cross-validation with the train and validation set. This corresponds to a 60%
train, 20% validation and 20% test split.

During training the Dice loss was used as a the loss function, defined by
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1 —Dice (X,Y). The Dice similarity coefficient [37, 2] (Dice) is a measure of
spatial overlap accuracy, defined as
Dice = 2AxXnY] (2)
X+ Y]

where X is the matrix of predicted segmentations and Y is the matrix of
the annotated segmentations. The Dice similarity coefficient has a range of
0, 1], where 0 means the two segmentations have no overlapping pixels, and
1 means all pixels overlap.

Before calculating the Dice metric on the validation set, the probability
values in the predicted segmentation maps were binarized with a threshold
of 0.5:

(3)

where 2’ is the binarized probability and x is the original probability value.
To fully utilize the memory of the video card, we chose the batch size s

L1 ir>05
10 otherwise

as
d2
§ = min (256—, 128) (4)
m

where d is the downsampling factor and m is the number of model channels.
The batch size was limited to 128 since the number of training images (the
annotated frames) was relatively small (always below 549).

Two metrics were used to evaluate the performance of the trained model:
the Dice and the average number of pixels per negative frame (referred to in
this work as the false positive pixels metric). The false positive pixels metric
is used to judge the performance on the negative frames. The Dice cannot
be computed for these frames, since there are no annotations present. The
average number of false positive pixels on a negative frame tells us how likely
the model is to segment pixels when there is no aorta present.

The U-Net was trained on the training frames and their corresponding
segmentation maps. Adam [13] was used to optimize the network with an
initial learning rate of 0.001. He-normalization [7] was used to initialize
the weight matrices. Early stopping was used to stop training when no
improvement was found in the validation Dice for 50 epochs. The maximum
number of epochs was set at 500. A fixed seed was used for all experiments
to ensure reproducible results. Experiments were implemented using the
Keras framework from Tensorflow 1.15.0 [1]. The models were trained and
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evaluated on a single GeForce RTX 2080 Ti (Nvidia Corp., Santa Clara, CA,
USA) graphics card.

3.2 Aortic diameter measurement from segmentation

The maximum aorta diameter was automatically measured from the segmen-
tations made by the U-net. First connected-component labeling (CCL) []
was used to determine the different components from the segmentation out-
put. For the US scans, the relevant 3D components were selected manually.
For the CT scans, the largest component was selected. Next, binary erosion
is applied to each 2D segmentation. The eroded segmentation is subtracted
from the segmentation to obtain the contour of the segmentation. Finally, a
direct least-squares ellipse fitting [0] is computed on the contour. As a result,
each frame has a fitted ellipse associated with it if a segmentation was made.
The diameter d was calculated as the average of the major axis (the longest
ellipse diameter) and minor axis (the shortest ellipse diameter).

3.3 Deployment on smartphone

The model with the highest Dice on the validation set that could also per-
form real-time inference on a smartphone was converted with TFLite (in-
cluded with TensorFlow 1.15 [1]), and subsequently deployed on a OnePlus
7T (Android 11). This model was used for the acquisition of dataset 2.

3.4 Statistical analyses

The Shapiro-Wilk test [33] was performed to determine whether the Dice
metric, false positive pixels metric, and aortic diameter measurements were
normally distributed. If this is the case, a t-test [39] was performed and
the mean and the standard deviation (SD) will be reported. Otherwise a
Wilcoxon signed rank test [13] was performed, and the median and interquar-
tile range (IQR) will be reported.
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4 Results

4.1 Experiment 1

Figure 3 shows the results of the experiments in which the downsampling and
model channel hyperparameters were varied. At each point, the mean metric
over the four folds £+ one standard deviation (colored area) is shown. The
models with 8 model channels appear most robust since they have the lowest
standard deviation. The model with a downsampling factor of 2 is the only
model to converge consistently over all model channel options. None of the
models converged for 64 model channels. For the models with downsampling
factors 4, 6 and 8, the false positive pixels metric goes above 3000 for > 16
model channels. This shows that over-segmentation tends to take place in the
models that do not converge. The model with downsampling factor 2 and 32
model channels shows the best performance. The model with downsampling
4 and model channels 8 is best performing model that can run in real-time
(20 fps) on a smartphone. This model was therefore selected to be used on
the smartphone for the collection of dataset 2.
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Figure 3: The validation Dice and false positive pixels metric performance
for varying downsampling rates and model channels.

4.2 Experiment 2

A comparison is made between the 2D model for the smartphone “2D model®”
(downsampling 4 and 8 model channels), the best 2D model “2D model?”
(downsampling 2 and 32 model channels) and the 3D model with the same
hyperparameters as 2D model?. For each model, the Dice metric (Table 1)
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is presented. Additionally the percentages of negative frames with no seg-
mentation are reported (Table 2). For all models, the Dice scores are not
normally distributed according to a Shapiro-Wilk test (p < 0.05), therefore
the median and the IQR are reported.

Table 1: Median Dice metric
Validation Test
2D model® 0.81 (IQR =0.73-0.87) 0.83 (IQR = 0.71 - 0.89)
2D model®  0.86 (IQR = 0.78 - 0.9)  0.86 (IQR = 0.78 - 0.9)
3D model  0.87 (IQR =0.8-0.91) 0.88 (IQR = 0.78 - 0.92)

Table 2: Percentage of negative frames with no segmentation

Validation  Test
2D model® 36.9% 59.2%
2D model? 53.7% 76.3%
3D model 61.5% 82.0%

A paired one-sample Wilcoxon Signed rank test shows that there is a sig-
nificant difference in Dice scores and number of false positive pixels between
all three models on the test set (Table 3). Compared to the smartphone 2D
model, the best 2D model achieves a higher Dice score and a lower number
of false positive pixels. The 3D model achieves both a better performance on
the Dice metric and false positive pixels metric, compared to the 2D models.

Table 3: Model comparison

p-value (Dices) p-value (pixels)

2D model® vs 2D model? < .001 < .001
2D model® vs 3D model < .001 < .001
2D model®? vs 3D model .002 < .001

The segmented aorta of an example patient is shown in figure 4. This
example was selected to show a fully successful segmentation of the aorta
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over the annotated region. Note that in the 2D models, there are more false
positive segmentations in comparison to the 3D model (around frames 100
for 2D model? and frame 150 for 2D model®).
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2D model B (Dice: 0.86, false positive pixels metric: 169)
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Figure 4: 2D plots of an example patient for different models. In the frontal
plot, the pixels of each segmentation are summed over the y-axis of all frames.
The x-axis of the plot corresponds to the right (0) and left of the patient.
In the saggital plot, the pixels of each segmentation are summed over the
x-axis of the frame. The x-axis of the plot corresponds to the anterior (0)
and posterior of the patient. The frame number is shown on the y-axis of the
plot and progresses from superior (frame 0) to inferior. The solid red lines
indicate the positive range and the dotted red lines indicate the margins
(determined during annotation).
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The aortic diameter measurement of the US is compared with the aortic
diameter measurement of the CT, for the same example patient (Figure 5).
The diameters from the US models closely follow the the CT model, although
the CT diameters tend to be generally higher.
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Figure 5: The course of the CT diameter for an example patient in compar-
ison with the extracted diameters that were inferred with the segmentation
models. The dotted line at 30 mm indicates the threshold for aneurysms.

4.3 Experiment 3

Table 4 shows the percentages of frames with a diameter measurement on the
first acquisition in dataset 1 and dataset 2, respectively. For all models, the
percentages from both dataset 1 and dataset 2 are not normally distributed
according to a Shapiro-Wilk test (p < 0.05). For the percentage metric,
the median and the IQR are reported. An unpaired two-samples Wilcoxon
Signed rank test shows that there is no significant difference between the
quality of the first acquisition in dataset 1 and dataset 2.
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Table 4: Median percentages of frames with a diameter in acquisition 1.

% (dataset 1) % (dataset 2) p-value

2D model® 17.3 (IQR = 0.0 - 52.1) 43.6 (IQR = 13.6 - 58.8)  0.08
2D model? 17.0 (IQR = 0.0 - 43.0) 42.6 (IQR = 13.0 - 58.0)  0.05
3D model 19.4 (IQR = 0.0 - 40.2) 36.3 (IQR = 10.4-53.2)  0.09

An example shows what the diameter measurement of the 3D model with
19% frames with a diameter and a model with 43.4% looks like (Figure 6).
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Figure 6: CT and US diameter measurements. Top: 19% frames with a di-
ameter measurement. Bottom: 43.4% frames with a diameter measurement.
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4.4 Experiment 4

A comparison was made between the first acquisition and second acquisition
of data set 2, in order to investigate whether the guidance with the deep
learning system resulted in better scan quality.

Dataset 2 consisted of 44 patients. The nnUNet did not perform a correct
segmentation in two cases, so the results are shown for the remaining 42
cases. For differences between the automatically measured maximum aortic
diameters from the CT and from the US segmentation, the median and IQR
are reported (Table 5). The US diameters against the CT diameters are
shown in a scatter plot (Figure 7). The diameter measurements obtained with
the 3D model on acquisition 2 had significantly smaller CT-US differences
than those obtained from 2D model S on acquisition 1 (p = 0.025) and
acquisition 2 (p = 0.042), and the 3D model on acquisition 1 (p = 0.005).

Table 5: Median CT-US differences for 2D model®, 3D model and their
acquisitions. A positive median means that the CT diameter is larger than
the US diameter.
Model Acquisition 1 (mm) Acquisition 2 (mm)
2D model® 7.1 (IQR = 4.6 - 10.7) 6.5 (IQR = 4.0 - 9.8)
3D model 7.4 (IQR =4.7-11.8) 6.0 (IQR =4.0-9.6)
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Figure 7: Scatter plots of the US diameter against the CT diameter for ac-
quisition 1 and 2. The CT diameters were determined from the nnUNet
segmentations and the US diameters were determined from the 2D model®
and the 3D model segmentations. The dashed lines shows the limits of agree-
ment of 5 mm.

The percentages of the US-CT differences that are within the clinically
accepted limits of agreement of £5 mm are reported (Table 6).
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Table 6: The percentages of CT-US differences that are between the limits
of agreement of +5 mm.

Acquisition 1 Acquisition 2
2D model® 69% 78.6%
3D model 71.4% 73.8%

5 Discussion

In this study, we presented a deep-learning method to automatically detect
and measure the abdominal aortic diameter from US imaging using the Mi-
crUs Pro C60S. For dataset 1, data of 100 patients were collected. These
data were used to train deep-learning models with varying downsampling
factors and model channels. The model with the highest validation Dice was
additionally trained on 3D input. This 3D model performed significantly
better compared to all other models on the test set and showed a median
Dice of 0.88 (IQR = 0.78 - 0.92). The 3D model could not run real-time on
a smartphone. The best performing 2D model that could also run real-time
on a smartphone (2D model®) had a median Dice of 0.83 (IQR = 0.71 -
0.89) on the test set. 2D model® was used to collect a second dataset of 44
patients. During the acquisition of this data the 2D model® was included
on a smartphone for real-time inference. The CT-US maximum diameter
differences from the first acquisition and second acquisition were compared.
The differences obtained with the 3D model on acquisition 2 are significantly
smaller than all other differences. This model had a median difference of 6.0
mm (IQR = 4.0 - 9.6 mm), with 73.8% of cases falling within the clinically
acceptable limits of agreement of + 5 mm. compared to CT.

In the first experiment the performance of the Dice and false positive
pixels metric investigated under different hyperparameter combinations of
the downsampling factor and model channels. It was found that the models
that were trained were most stable at 8 model channels. This means that
they always trained and converged to a solution for each of the four valida-
tion folds. It is possible that using more than 8 model channels creates an
overparameterized model in our case, because we had limited data to train
on (60% of 549 annotated frames). The same was observed by a similar re-
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search that performed placenta localization from US with limited amounts
of data [32]. The only model that was stable across all settings for model
channels, was the model trained on images with a downsampling factor of
2. We hypothesize that downsampling, at least up to a factor of 2, also acts
as a regularizer. For the downsampling 2 model, the Dice scores were the
highest and the number of pixels were lower than all models with a higher
downsampling factor. Specifically, we chose the downsampling 2 model with
32 model channels as our best model for inference. A downsampling factor
of 2 achieved the highest Dice on the validation set and 32 model channels
produced the most spherical segmentations. The model with downsampling
4 and model channels 8 was chosen to be used for real-time inference on the
smartphone, since its Dice performance was highest for all models that could
be run in real-time on a smartphone.

The best performing model on the test set was the 3D Model with a
median dice of 0.88 (IQR = 0.78 - 0.92). To assess the performance of
negative frames, we looked at the percentage of negative frames with no
segmentation. The 3D model was again the best performing model with
82% on the test set. We also found that the 3D model is significantly better
compared to both 2D models in terms of the Dice and false positive pixels
metric. Additionally, the 2D model? outperforms the model®, which was
to be expected because of the lower downsampling factor. This means that
there is added benefit to giving 3D information to the U-Net as input. It
corresponds to how humans interpret an US scan, and helps to model to
interpolate between frames. An example of this can be seen in a case where
the 3D model does not make false positive segmentations in regions where
there is no aorta, as opposed to the 2D models (Figure 4). An additional
possibility is to use volumetric segmentation such as V-Net [20] to take into
account 3D information and also use 3D convolutions. This model could be
computationally more expensive but it might be possible to run this on a
smartphone in the future. If a V-Net model turns out to be more robust for
this problem, it could be used on a computer for off-line inference.

The second part of this work investigated whether the scan quality would
be improved when we were guided by the deep learning model, to provide
real-time inference while scanning a patient. Our quantitative measure to
assess the scan quality was the percentage of frames where there was no
segmentation done and no diameter measured. It was found that there was
no significant difference between the first acquisition of dataset 1 and dataset
2. For the other models there is a trend towards significance, so it could be
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that the number of test cases (20) is too low. It is debatable whether the
percentage of frames with a diameter is a good measure for determining scan
quality. During scanning, it is possible that the transducer is held still at the
start of the scan and also at the end. This can result in a lower percentage.
It should be determined what the minimum percentage of frames with a
diameter is for aneurysm cases with a sufficient quality.

The results show that the maximum aortic diameter CT-US differences
from acquisition 2 obtained with the 3D model, are significantly smaller com-
pared to the differences for acquisition 1. The differences on acquisition 2
from the 3D model have a median of 6.0 mm (IQR = 4.0 - 9.6 mm). The
CT-US differences have a positive median for each model and acquisition,
meaning that the CT diameters are larger than the US diameters. This is
consistent with the observations from the literature. The results demon-
strate that an acquisition with guidance from the deep-learning system does
improve the scan quality. An example of this are three cases for which US
segmentation failed in acquisition 1, but not in acquisition 2 (Figure 7).
73.8% of the CT-US differences obtained from the 3D model on acquisition 2
are within the clinically acceptable limits of agreement of + 5 mm. Jaakkola
et al. [11] compared the aortic diameter measurements made by a radiolo-
gist on CT and ultrasound. They showed that 83% of these measurements
have a difference of £ 5 mm. This shows that the method we use to obtain
an automatic diameter measurement from US is almost comparable to that
of a radiologist. However, we have to consider that a large portion of the
US scans were not of sufficient quality. This work therefore shows feasibil-
ity to automatically measure the aortic diameter, but future research on a
larger population, which includes larger aneurysms, is required to validate
our approach.

Future research directions could focus on improving the model’s robust-
ness or on obtaining US scans of better quality. To improve the model’s
robustness it is possible to use data augmentation. B-mode images could be
flipped horizontally and rotated. Another possible augmentation is to try out
changing the contrast of the B-mode images. From a theoretical perspective,
it could be interesting to adapt the loss function to the specific problem of
abdominal aorta detection, similar to how humans would detect it. The loss
function could include the sphericity of the segmentation and the criterion
that only a single component is segmented. This first criterion could help
because the aorta always has the shape of a circle or an ellipse. The second
criterion ensures that there can only be one segmented structure. The model
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should for instance not segmented both the inferior vena cava (IVC) and the
aorta, or various abdominal arteries. These two criteria could be included
in a weighted loss function, along with the Dice loss term. Finally, since we
have now obtained a working model, it can be easily applied to infer seg-
mentations new on scans, which could then be used as annotations for new
training data. This is a quick way to gather more training data and to make
the model more robust.

A limitation that emerged from this work was the difficulty to obtain US
scans of sufficient quality. In the future it is important to find a solution
to this problem. A scan is of sufficient quality if the whole aorta is visible
during the scan and scan be segmented after recording. If parts of the aorta
are missing, it cannot be ruled out that an aneurysm was present but was
not detected. Specifically shadowing in abdominal US is hard to avoid due to
collection of bowel gas. The aim of the application is that untrained people
can measure the aortic diameter without extensive training. The quality of
scans recorded with the MicrUs Pro C60S by trained sonographers could
be compared to the quality of scans by a layman. If the quality of scans
is sufficient for trained sonographers, their input could be used to design a
protocol that reduces the current quality problems. There is also a bias in
our study population, because they all received an CT scan. A study cohort
in AAA patients and the general population is required to investigate if the
quality of scans in this population is the same.

A follow-up to this work is to include training data for aneurysm cases.
In the current work we have trained a model on healthy aortas, but the
ultimate goal would be to monitor the aortic diameter of patients with an
aneurysm. The current model could be used as a pre-trained network to
train aneurysm cases, or the annotations for aneurysms could be combined
with the annotations for healthy aortas.

6 Conclusion

In this study, we show a deep-learning method to automatically detect and
measure the aortic diameter from US imaging. Data was collected from 144
patients. Data from 100 of those patients was used to create a deep-learning
model. The best performing model achieved a median Dice of 0.88 on the
test set. This demonstrates the feasibility of the deep-learning approach for
automated aortic diameter detection. We investigated whether a layman
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could obtain US scans of better quality when guided with real-time inference
from a deep learning system on a smartphone. The laymen acquired US
data from 44 patients which also received a CT scan. The best performing
3D model showed a median difference of 6.0 mm (IQR = 4.0 - 9.6) between
the US and CT measurement. 73.8% of all cases fell within the clinically
acceptable limits of agreement of + 5 mm. This approach shows promising
results for automated aortic diameter measurement for laymen. A future
study should investigate this approach on aneurysm cases.
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A Appendix

A.1 Inter-observer variability

Two observers measured the maximum anterior-posterior (AP) diameter of
the aorta for each of the 100 scans. One observer was the author of this thesis,
who was trained by a researcher with six years of ultrasound experience. The
AP diameter is a standard metric for measuring the aorta diameter, and has
been shown to have a better reproducibility over the transverse diameter [3].
To measure the aorta we used the outer-to-outer (OTO) method (Figure 2).
These measurements were compared to examine the inter-observer variability.
Measurements were made by using grand-challenge.org [15].

Ultrasound is highly dependent upon the operator. To assess the inter-
observer variability in the scans, the diameter measurements from both ob-
servers were compared. The clinically acceptable limits of agreement between
aortic diameter ultrasound measurements are = 5 mm [23]. This means that
the absolute mean difference between measurements is < 5 mm for 95% of
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the measurements. Inter-observer differences of maximum AP diameter mea-
surements by trained sonographers range from 2 mm or less in 75% of cases,
to 4 mm or less in 96% of cases [30].

The differences are shown in a Bland-Altman plot (Figure 8). The ob-
servers were able to find and measure a diameter in 62 out of 100 cases. The
absolute mean difference is 1.51. In total 75.8% (47 out of 62) measurements
differ 2 mm or less, and 91.9% (57 out of 62) of measurements differ 4 mm or
less. Only 2 cases were outside of the clinical limits of agreement of £+ 5 mm.
This is comparable to what trained sonographers achieve. In conclusion, the
reproducibility of aortic measurements from ultrasound images in the axial
plane, recorded with the MicrUs Pro C60S, seems to be clinically acceptable.

Aorta diameter measurements n=62
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Figure 8: Bland-Altman plot of the sufficient cases (green points) and in-
sufficient cases (orange points). The mean aortic diameter is shown on the
x-axis. The inter-observer difference is shown on the y-axis. £5D1.96 shows
the 1.96 times the standard deviation from the mean difference.
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A.2 Manual quality evaluation

For dataset 1, it was manually assessed whether the quality of an US scan was
sufficient or insufficient. Rater 1 was a researcher with six years of ultrasound
experience, and rater 2 was the author of this report. A scan was labeled
as insufficient when the course of the aorta was partly missing, and when
we deemed it possible that an aorta with a larger diameter may have been
present in the missing region. There are multiple factors that can cause the
image of the aorta to be missing, such as obesity, excess bowel gas or air,
cysts in the abdomen, or bad contact between the transducer and skin. The
number of patients with scans that both raters assessed as sufficient was 28%
(28 out of 100) (Table 7).

Table 7: Number of patients with sufficient and insufficient scan quality,
assessed by rater 1 and rater 2.

Rater 1
Sufficient Insufficient
Rater 2 Sufficient 28 18
Insufficient 2 52

A.3 Batch size experiment

In a similar research that performed automatic placenta localization from
ultrasound imaging with deep learning [32], it was found that small batch
sizes performs better for downsampling factors 4, 6 and 8. Therefore, for the
smartphone model (downsampling 4, model channels 8), further optimization
experiments with smaller batch sizes (4, 8, 16, 32 and 64) were carried out
to see if this leads to a better performance. For smaller batch sizes there
is indeed an increase in the Dice score (Figure 9). However, this also seems
to have the trade-off that the average number of pixels on negative frames
becomes higher.
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Figure 9: The mean Dice and false positive pixels metric for different batch
sizes for the smartphone model. At each batch size the mean £+ SD of all
cross-folds is shown.

A qualitative evaluation shows that a model with a batch size of 16 tends
segment slightly more and shows a better generalization ability in comparison
to a model with a batch size of 128. This can be observed in an example
patient where the top of the first component (around frame 25) and bottom
of the second component (around frame 125) are more fully segmented with
the batch size 16 model (Figure 10). Overall, this results in a higher Dice
score.
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Figure 10: 2D plots showing a case with a more complete segmentation for
the batch size 16 model. Top row: batch size 128 model. Bottom row: batch
size 16 model.

In contrast, the model with batch size 16 performed worse on the false

positive pixels metric. This means that it would more easily give false positive
segmentations. For instance in a case with insufficient quality, the batch size
128 model segments an average of 793 pixels per negative, while the batch
size 16 model segments 1927 (Figure 11). For this reason, the model was not
chosen to be implemented on the smartphone, but the model with the lowest
number of pixels (batch size 128) was chosen instead.
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2D model 5, batch size 128 (false positive pixels metric: 793)
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Figure 11: 2D plots for an insufficient

Right to left (mm)

Bottom row: batch size 16 model.
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case. Top row: batch size 128 model.

A possible explanation for the increased generalization ability for smaller

batch size is because it leads convergence to flat minimizers, while using

larger batch sizes leads converge to sharp minimizers [12]. Flat minimizers
can be described with lower precision and have a better generalization perfor-
mance. An experiment for future research could be compare the sharpness
of minima for a small batch-size regime and a large batch-size regime, to
validate if this phenomenon also occurs in our problem setting.
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