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9 General Introduction 

Musculoskeletal disorders of the shoulder are extremely common, with reports of prevalence 

ranging from 6.9 to 26%.91  From 6.7 up to even 66.7% of the population has been reported to 

experience shoulder pain at least once in their lifetime 67 Hence, shoulder disorders are a relevant 

health problem for clinicians.  

Repetitive use of the arm, working above shoulder height and working with the upper limb in an 

awkward fashion have been shown to be related to shoulder pain.67 Specific professions such as 

nurses, construction workers, office workers and musicians seem to be at higher risk for shoulder 

disease.67;90 Another population which is prone to shoulder injuries consists of people 

participating in overhead sports activity.79 Repetitive overhead throwing challenges the shoulder 

through high speed and high impact forces in extreme positions.  

The most common source of shoulder pain appears to be the rotator cuff 93 with the most 

prevalent medical diagnosis being subacromial impingement.1 The term “subacromial 

impingement” is used to describe irritation from the anteroinferior aspect of the acromion onto 

the superior aspect of the rotator cuff.86 The subacromial space of the shoulder is formed 

superiorly by the coracoacromial arch and limited by the humeral head below.  Embracing this 

humeral head and covered by the coracoacromial arch, the rotator cuff muscles play a 

considerable role in stabilizing and assisting motion of the most mobile joint in the body. When 

the arm is elevated, the humeral head and the acromion approach each other, narrowing the 

subacromial space and impinging the rotator cuff.40 Thus, subacromial impingement is rather a 

possible cause of rotator cuff disorders, ranging from tendinopathy to full ruptures, than being 

the pathology itself. In literature however, the term subacromial impingement is still often used 

as a medical diagnosis. 

The focus of this dissertation is on tendinopathy of the rotator cuff associated with subacromial 

impingement. The aponeurotic tendon of the rotator cuff is formed by the confluence of four 

muscles: the supraspinatus, infraspinatus, teres minor and subscapularis as illustrated in figure 1. 

The insertion of the rotator cuff tendons onto the humeral head is also called the footprint 

because of the large surface it takes to attach itself to the humerus.31 Despite the representation 

in anatomy text books, no strict separation can be made between the different tendons. All are 

connected to each other and to the joint capsule and ligaments which results in an interwoven 

“sleeve or cuff” for the humeral head, to which the rotator cuff owes its name.23  

 

 

 

 

 

 



 
C General Introduction 

Coracoacromial arch: 

AA -  anterior acromion 

PA - posterior acromion 

CA - coracoacromial ligament 

CP - coracoid process 

  

Rotator cuff tendons: 

TM - Teres minor    

IS – Infraspinatus  

SS – Supraspinatus  

Subsc – Subscapularis 

RI – Rotator Interval 

 

Figure 1. Supero-lateral view of left cadaveric upper limb with borders of rotator cuff tendons 

traced onto the glenohumeral joint capsule (Figure adapted from Hughes et al. 201252, with 

permission) 

 

1. WHAT’S CAUSING TENDINOPATHY OF THE ROTATOR CUFF? 

 

All factors enhancing subacromial impingement are called “extrinsic factors” in the etiology of 

rotator cuff tendinopathy. These factors are lying outside the tendons and can be divided into 

anatomical factors, causing primary subacromial impingement, and biomechanical factors, 

causing secondary subacromial impingement. The extrinsic subacromial compression mechanism 

in rotator cuff tendinopathy is discussed in part 1.1. Secondary subacromial impingement is 

associated with changes in scapulothoracic (part 1.1.1.) and glenohumeral kinematics (part 1.1.2.) 

which can reduce the subacromial space. These altered kinematics have in turn been related to 

aberrant muscle performance of scapular muscles and the rotator cuff, respectively, and with 

tightness of the posterior shoulder structures. Good neuromuscular control and adequate 

scapular and glenohumeral kinematics depend upon accurate proprioceptive information. A 

deficit of this propriceptive system could contribute to subacromial impingement. Changes in 

proprioception found in patients with subacromial imipingement are discussed in part 1.1.3. 

Rotator cuff disorders associated with subacromial impingement are very common in a specific 

population, namely overhead athletes.121 Surprisingly, healthy athletes display similar changes as 

the ones reported in patients with subacromial impingement (posterior shoulder tightness, 

rotator cuff muscle imbalance and altered scapular kinematics), which are discussed in part 1.1.4. 

Subsc 
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Besides subacromial impingement, factors lying inside the tendons were recently found to 

contribute to tendon degeneration and development of rotator cuff tendinopathy. These are 

called “intrinsic factors” and are described in part 1.2. Intratendinous degeneration is theorized to 

result from overload, compression and/or stress shielding. Figure 2 gives a non-limited schematic 

overview of the etiologic factors related to rotator cuff tendinopathy that are discussed below. 

 

 

Figure 2. Non-limited schematic overview of etiologic factors related to rotator cuff 

tendinopathy 

 

 

1.1 Extrinsic factors related to subacromial impingement 

 

Neer was the first to describe irritation from the anteroinferior aspect of the acromion onto the 

superior aspect of the rotator cuff as a cause of rotator cuff pathology in 1972.85 It was believed 

that the more curved the acromion is, the more the rotator cuff becomes impinged.9 This is called 

primary subacromial impingement because of the structural nature of the problem. Next to a 

curved acromion, prominent osseous changes to the inferior aspect of the acromioclavicular joint 

or coraco-acromial ligament may result in structural narrowing of the subacromial space.101 

However, several authors have questioned the primary subacromial impingement theory. If 

primary subacromial impingement could explain all rotator cuff pathology, this would imply a 

very strong correlation between acromial abnormalities and rotator cuff pathology. Nonetheless, 

it was shown that a lot of patients with rotator cuff pathology don’t present with acromial 
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abnormalities42 while a lot of persons who do show abnormalities do not necessarily develop 

rotator cuff pathology.122 Furthermore, the acromioplasty procedure (in which the anterior part 

of the acromion is removed to enlarge the subacromial space) failed to show superior results 

compared with conservative treatment.15;16;46;47 This suggests that other than anatomic factors 

must be contributing to rotator cuff tendinopathy.  

 

Besides structural narrowing of the subacromial space, functional narrowing can occur in an 

anatomically normal sized subacromial space. This is termed secondary subacromial 

impingement. Scapular and humeral kinematics can dynamically influence the size of the 

subacromial space. Factors that alter these kinematics are therefore capable of reducing 

subacromial space size.  

 

 

1.1.1 Changes in scapular kinematics 

 

Ludewig et al. examined three-dimensional scapular position and motion in healthy subjects 

using electromagnetic motion tracking with transcortical pins into the scapula.65 They reported 

that at rest the scapula is 5.4± 1° upwardly rotated, 41.1±2° internally rotated and 13.5±2° 

anteriorly tilted in healthy subjects. During elevation, most studies included in a review of Struyf 

et al. agreed that the scapula moves to scapular upward rotation, external rotation and posterior 

tilt. Ludewig et al. found a scapular upward rotation of 39°, scapular external rotation of 2° and 

scapular posterior tilt of 21° during elevation in healthy subjects..65 Reports on scapulothoracic 

kinematic alterations, also called scapular dyskinesis, in patients with subacromial impingement 

show mixed results. A review of Struyf and co-workers concluded that the majority of studies 

report a decreased upward rotation39;62, posterior tilt39;62;68 and external rotation62 of the scapula 

during elevation of the arm in patients with subacromial impingement.107 Of the other studies  

included in the review examining upward rotation, 1 showed increased upward rotation75 and 3 

showed no difference44;50;68. One of the other studies investigating posterior tilt found an 

increase75 and the remaining 2 found no difference44;50. Concerning scapular external rotation, 

there is 1 other study that found an increase50 and 4 that found no difference. Varying 

methodology can explain these diverging results. 

Scapular dyskinesis observed in patients with subacromial impingement, with decreased upward 

and external rotation and posterior tilt, is believed to compromise the subacromial space by 

bringing the acromion in closer proximity with the humeral head. Solem-Bertoft et al. showed a 

relation between protraction of the scapula and reduction of the subacromial space.105 Atalar 

further provided evidence by reporting that when scapular motion is limited, the subacromial 
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space becomes more narrow.4 Vice versa, Seitz et al. showed increased subacromial space when 

the scapula was manually assisted to upward rotation and posterior tilt during a “scapular 

assistance test”.102  

 

Several factors have been postulated to give rise to scapular dyskinesis amongst which are 

posterior shoulder tightness, aberrant scapular muscle performance, posture and pectoralis 

minor tightness.101 In view of the studies of this dissertation posterior shoulder tightness and 

aberrant scapular muscle performance are discussed more into detail below. No causational 

relationship between scapular dyskinesis and the development of subacromial impingement has 

been determined yet. Evidence is limited to observation of scapular kinematic alterations in the 

presence of posterior shoulder tightness and aberrant scapular muscle performance, and 

demonstration of posterior shoulder tightness and aberrant scapular muscle performance in 

patients with subacromial impingement.  

 

Posterior shoulder tightness 

Posterior shoulder tightness is believed to be the result of both capsular tightness and muscular 

contracture. This manifests clinically as decreased glenohumeral cross-body adduction and 

internal rotation mobility.115 Compared with the healthy shoulder, the affected shoulder of 

patients with subacromial impingement was identified to have posterior shoulder 

tightness.82;114;118 Whether posterior shoulder tightness or subacromial impingement pathology 

comes first, is not known at the present time. Posterior shoulder tightness might result from 

avoidance of painful internal rotation in patients with subacromial impingement. Conversely, 

posterior shoulder tightness might be present in healthy subjects and result in subacromial 

impingement because of altered shoulder kinematics. 

 

Several authors have examined healthy subjects with posterior shoulder tightness and have 

shown that the scapula is in a more anteriorly tilted, protracted and less upwardly rotated 

position.10;59;112 It is believed that a loss of glenohumeral internal rotation may force the scapula in 

this position, ultimately resulting in a loss of scapular control.18;56 This altered scapular position 

would place the acromion closer to the rotator cuff tendons and increase the potential for 

impingement. However, Thomas et al. 110 found a positive correlation between posterior capsule 

thickness and scapular upward rotation during glenohumeral abduction. They theorized that this 

can be explained by the increased pull onto the scapula by the stiffened posterior capsule. 

Though it is clear that posterior shoulder tightness alters scapular kinematics, so far there is no 

consensus as to the direction of these alterations. Moreover the role of posterior shoulder 

tightness in subacromial impingement remains unclear. 
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Aberrant scapular muscle performance 

The trapezius and serratus anterior muscles function to stabilize the scapula and induce upward, 

external rotation and posterior tilt.5;53 Changes in muscle activity or muscle force of the trapezius 

and serratus anterior in patients with rotator cuff tendinopathy could therefore alter scapular 

kinematics and contribute to subacromial impingement. 

Concurrent with scapular kinematic alterations, aberrant scapular muscle activity was found in 

patients with subacromial impingement. Activity of the serratus anterior, middle and lower 

trapezius was found to be decreased while upper trapezius muscle activity was found to be 

increased.25;29;34;62 

However, caution is needed when formulating conclusions since a review of Chester et al. on the 

impact of subacromial impingement syndrome on scapular muscle activity patterns showed that 

these findings are not consistent.21 The highest quality studies found by the authors only provide 

strong evidence for increased upper trapezius activation and delayed activation of the lower 

trapezius in patients with subacromial impingement syndrome. 

 

Next to altered muscle activity, decreased scapular muscle force was shown in patients with 

subacromial impingement. Cools et al. revealed lower protraction force on the injured side of 

overhead athletes compared with the non-injured side and compared with a healthy athletic 

population.30 This provides further evidence for deficient serratus anterior functioning which is an 

important upward rotator of the scapula. 

 

To link altered scapular muscle performance with scapular dyskinesis, studies on the effect of 

shoulder muscle fatigue on scapular kinematics may be illustrative. Borstad et al. aimed to 

specifically fatigue the scapular muscles in the shoulders of asymptomatic subjects with a push 

up plus exercise.13 Following the task, the upper trapezius showed higher activity during arm 

elevation and the scapula showed decreased posterior tilt and external rotation. No influence on 

upward rotation of the scapula was seen. This decreased scapular motion could result in 

narrowing of the subacromial space and is in line with findings in patients with rotator cuff 

tendinopathy. 

General shoulder muscle fatigue, which occurs in overhead athletes or workers with regular 

exposure to overhead work, is proposed to result in neuromuscular alterations that contribute to 

shoulder pathology. McQuade et al. used a resisted elevation task to fatigue the shoulder similar 

to overhead work and observed a decreased scapulohumeral rhythm (i.e. the movement of the 

scapula across the thoracic cage in relation to the humerus), which implies more scapular upward 

rotation, as muscle fatigue increased.78  
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In agreement, Ebaugh et al. also reported increased upward and external rotation of the scapula 

after an elevation fatigue protocol that resembled an industrial assembly task.36 Moreover, they 

showed that repetitive overhead activities fatigue the scapular muscles to a lower degree than 

the glenohumeral muscles which allows the scapula to compensate in order to obtain full 

elevation. This results in contrary changes than the ones seen after specifically fatiguing the 

scapular muscles by a knee push up plus exercise.13 During repetitive arm elevations in a non-

fatigued status, the scapulohumeral rhythm or synchronization between movement of the 

humerus and the scapula is balanced to allow the most efficient elevation of the arm. After 

overhead working or overhead throwing fatigue this balance might be disturbed.The direct 

consequence of these changes on soft tissues in the subacromial space remains unclear.  

 

 

1.1.2 Changes in glenohumeral kinematics 

 

Determining the position of the bottom of the subacromial space, kinematics of the humerus also 

play an important role in narrowing of the subacromial space. A superior and anterior translation 

of the humeral head, bringing it in closer contact with the coracoacromial arch40;43, was 

consistently seen in patients with rotator cuff tendinopathy.63;99 This finding has been associated 

with posterior shoulder tightness and aberrant rotator cuff muscle performance.  

 

Posterior shoulder tightness 

As described above, posterior shoulder tightness and associated decreased internal rotation 

range of motion has been shown on the injured side of patients with subacromial 

impingement.82;118 Harryman et al. investigated the effect of posterior shoulder tightness on 

glenohumeral kinematics in cadavers.48 They reported significantly increased anterior and 

superior translation of the humeral head during shoulder flexion after surgical tightening of the 

posterior capsule. This suggests that the presence of posterior shoulder tightness in patients with 

subacromial impingement could be responsible for the altered humeral head kinematics and 

could contribute to impingement of the subacromial tissues. No studies have confirmed this. 

 

Aberrant rotator cuff muscle performance 

Decreased rotator cuff performance might also relate to proximal migration of the humeral head 

in patients with rotator cuff tendinopathy. McCully et al. performed a suprascapular nerve block 

to paralyze the supraspinatus and infraspinatus in healthy subjects and found increased 

activation of the deltoid.76 Optimal balance between the rotator cuff and deltoid is necessary for 

good glenohumeral kinematics. The rotator cuff pulls the humeral head downward and 
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neutralizes the superior pull of the deltoid on the humerus.89 Impairment of rotator cuff/deltoid 

balance could be responsible for the increased superior translation of the humeral head noted in 

patients with subacromial impingement symptoms. 

 

Several studies investigated rotator cuff muscle activity in patients with subacromial 

impingement symptoms. (Table 1) 

 

Authors Results Compared 

with… 

Diederichsen et 

al. 
34

 

↓ infraspinatus activity during external rotation  

↑ supraspinatus activity during dynamic abduction  

Healthy subjects 

Brox et al.
14

 ↓ infraspinatus activity during isometric abduction 

unaltered supraspinatus activity during isometric 

abduction  

The unaffected 

side 

Myers et al.
81

 ↓ rotator cuff coactivation +↑ middle deltoid activity 

from 0 to 30° elevation 

↓ rotator cuff  coactivation from 30 to 60° elevation  

 ↑ rotator cuff coactivation from 90 to 120° elevation  

Healthy subjects 

Reddy et al.
94

 ↓ rotator cuff but also ↓ deltoid activity during scapular 

abduction  

Healthy subjects 

Table 1. Rotator cuff muscle activity changes in patients with subacromial impingement 

symptoms. 

 

From these studies, it is clear that rotator cuff muscle activity patterns are altered in subjects with 

subacromial impingement symptoms but currently no conclusions can be drawn as to rotator 

cuff/deltoid muscle activity balance due to varying results.  

 

Studies on rotator cuff muscle force also showed variations in patients with subacromial 

impingement. Decreased isometric, concentric and eccentric torque of the rotator cuff have been 

detected in patients suffering from subacromial impingement.14;69;113;118 Moreover muscular 

imbalance of rotator cuff force occurs as a result of external rotation force deficits exceeding 

internal rotation force deficits.69 This could  be related to imbalanced forces onto the humeral 

head and altered humeral kinematics.  
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Examining the effect of rotator cuff muscle fatigue provides further evidence on the relation 

between decreased rotator cuff muscle performance and superior humeral head migration.20;99 

After fatiguing the supraspinatus in a prone horizontal abduction position in healthy subjects, 

Chen et al. radiographically determined significant superior migration of the humeral head within 

the initiation of abduction.20 Teyhen et al. and Royer et al. confirmed this by use of fluoroscopic 

assessment of humeral head position.99;108  

Fatigue of the rotator cuff in overhead athletes or overhead workers is theorized to be a risk 

factor for developing subacromial impingement. Chopp et al. fatigued the rotator cuff with a 

simulated job task and strengthened this suggestion by showing increased superior translation of 

the humeral head after continuous overhead work.22 

 

 

1.1.3 Changes in proprioception 

 

From the investigations described above, it can be derived that neuromuscular control is altered 

in subjects with rotator cuff pathology associated with subacromial impingement. The 

mechanism through which shoulder injury gives rise to compromised neuromuscular control is 

not fully understood. Vice versa it is not known if compromised neuromuscular control could be 

rather the cause and contributing to shoulder injuries. As good neuromuscular control depends 

on adequate afferent information from the peripheral structures, proprioception likely plays a 

crucial role in patients with rotator cuff disorders. Proprioception is defined as the afferent 

information, arising from peripheral areas of the body, that contributes to joint stability, postural 

control and motor control.97 Three submodalities of proprioception can be distinguished, 

including joint position sense, kinesthesia and sensation of force.97 Joint position sense is the 

appreciation and interpretation of the position and orientation of a joint in space. Kinesthesia is 

the ability to appreciate and interpret joint motions and sensation of force is the ability to 

appreciate and interpret force applied to or generated within a joint.84 

 

The number of investigations on proprioception in subjects with subacromial impingement and 

rotator cuff tendinopathy is limited. Machner et al. showed impaired kinesthesia on the affected 

side compared with the non-affected side in subjects with subacromial impingement.70 The 

authors believe that the changes in mechanoreceptors described in the subacromial bursa and 

the coracoacromial ligament are causing these changes in movement sense. Safran and 

colleagues also showed a kinesthetic deficit in baseball pitchers with rotator cuff tendinopathy.100 

They suggested that microtrauma of the capsule due to repetitive throwing either results in 
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damage of peripheral afferent receptors or in stretching the capsuloligamentous complex 

augmenting threshold to stimulation of the receptors.  

Anderson and Wee assessed joint position sense in subjects with chronic rotator cuff pathology 

using an active position-matching task.3 They showed significantly impaired joint position sense, 

especially at higher elevation degrees. They suggested the higher level of pain in this arc of 

motion was responsible for their results. Next to tissue damage, as described by Machner et al70 

and Safran et al100, pain is believed to be an important factor causing proprioceptive deficits. By 

overriding proprioceptive information, the nociceptive signals may inhibit proprioceptive 

information to reach the supraspinal level. These proprioceptive deficits could sustain the disease 

process and induce ongoing symptoms. However, it is unclear whether proprioceptive deficits are 

a result of, or contribute to the pathologic process.  

No studies have examined sensation of force in subjects with rotator cuff pathology.  

 

 

1.1.4 Special considerations in overhead athletes 

 

Repetitive throwing at high velocities places high demands on the shoulder. These demands 

differ between different sports disciplines. Firstly, it needs to be mentioned that biomechanics of 

the throwing motion can vary largely between sports. The baseball pitch serves as a basis for 

describing all overhead throws. A pitch is broken into six phases: wind-up, stride, arm cocking, 

arm acceleration, arm deceleration and follow through. However, a golf swing for example looks 

very different with a large adduction motion of the lead arm during the backswing, followed by 

the downswing and follow through phase. Another overhead sport with very specific 

biomechanics is swimming, in which the front crawl stroke for example requires very large 

bilateral shoulder motion against resistance of the water. 

Secondly, the use of a club in golf or a racket in tennis for example to strike the ball, opposed to 

throwing or releasing a ball, also affects the shoulder as this increases lever arm. Thirdly, another 

aspect in which sports demands differ is whether the athlete stands alone on the field or is 

playing in a team. In volleyball and handball for example players are at different positions in a 

team which might also have an impact on shoulder load. And lastly, contact sports, like for 

example American football, can place a different kind of stress on the shoulder.  

 

Over time, performing overhead sports activity leads to chronic adaptations in the shoulders of 

the athletes. Although these changes may be adaptive, some or a combination are presumed to 

be linked with shoulder pathology and decreased performance. Three important adaptations that 
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are very close to changes described in patients with subacromial impingement are discussed 

below. 

 

The dominant shoulder of an overhead athlete has been shown to  develop posterior shoulder 

tightness in response to long-term overhead activity.111 Glenohumeral internal rotation range of 

motion loss was identified in the dominant arm of healthy baseball11;110, tennis38, volleyball, 

basketball and handball players6 and swimmers98. Burkhart et al. termed this asymmetric range 

of motion glenohumeral internal rotation deficit (GIRD). This is theorized to result from high 

stresses onto the posterior shoulder capsule and muscles when decelerating the throwing 

shoulder.12 Repetitive microtrauma can occur and result in adaptive thickening of the posterior 

capsule and muscles conform with Wolff’s Law (the body adapts to the load it is placed under).18 

Thomas et al. provided evidence for a negative correlation between posterior capsule thickness 

and glenohumeral internal rotation.110  

As depicted above, posterior shoulder tightness is related to changes in glenohumeral and 

scapular kinematics that can augment compression of the rotator cuff tendons in the subacromial 

space, causing secondary impingement. Wilk et al. showed that athletes with GIRD of >20° are at 

higher risk for shoulder injuries.120 It remains unclear however how the subacromial space is 

affected by posterior shoulder tightness.  

 

Additionally, the eccentric decelerating function of the posterior shoulder muscles opposed to 

the concentric accelerating function of the anterior shoulder muscles is thought to result in 

rotator cuff force imbalance, as observed in overhead athletes. The external rotators (ER) have 

been indicated to be proportionally weaker than the internal rotators (IR) in overhead 

athletes.6;116 It is plausible that this imbalance influences glenohumeral kinematics. Leong et al. 

showed that the distance between the acromion and the humeral head is related to external 

rotation force and consequently to ER/IR force balance.61 

 

Lastly, altered scapular position and motion has been observed at the dominant side of 

overhead athletes. Compared with the non-throwing shoulder, the throwing shoulder is in a more 

protracted, internally rotated and anteriorly tilted position.59;88 This movement combination is 

assumed to bring the acromion into closer contact with the subacromial structures. In contrast, 

other authors found dominant scapular motion during elevation to occur with more upward 

rotation compared with the non-dominant side in overhead athletes.28;83 Possibly only a subset of 

athletes develop scapular dyskinesis. Silva et al. showed that the subacromial space in the 

shoulders of tennis players that present with scapular dyskinesis reduces to a greater amount 

during abduction compared with athletes without scapular dyskinesis.104  
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1.2 Intrinsic factors related to tendon degeneration  

 

There is a growing body of evidence to support a role for intrinsic factors in the pathogenesis of 

rotator cuff tendinopathy. Signs of degeneration have been found not only on the bursal side of 

the rotator cuff tendons, but also on the articular side and intratendinous. These changes are 

unlikely caused by friction of the coracoacromial arch. Hashimoto et al. identified diffuse 

degenerative changes including tendon thinning, fibre disorientation, degeneration, calcification, 

fatty infiltration and vascular proliferation.49 

Soslowsky et al. studied the shoulder of rats.106  These animals have an anatomy of the shoulder 

comparable to the human shoulder as they have an enclosed arch through which the 

supraspinatus tendon must pass. They found that mechanical impingement alone was not 

sufficient to induce rotator cuff tendinopathy. The presence of overload was crucial in 

development of pathology. Caution should be taken when transfering the results to the human 

shoulder.  

 

Insertional rotator cuff tendinopathy can be considered as an overuse injury, but is predisposed 

by pre-existing weakening of the tendon. The rotator cuff tendons experience a lot of 

compression. The human body adapts to these compressive forces by transforming the tendon 

into a more fibrocartilaginous tissue.2 Fibrocartilage is found at tendon attachment to bone and is 

uncharacteristically long (20mm) in the supraspinatus tendon compared with other tendons (5-

7mm).This tissue, resembling more cartilage than tendon, cannot withstand high tensile loads. 

This is thought to be the reason why the supraspinatus is more prone to degeneration. 

Furthermore, it was shown that not overuse but rather underuse or stress shielding (i.e. removal 

of normal stress) plays an important role in development of degeneration.2 Not all parts of the 

rotator cuff tendons are loaded to the same amount. For example, when moving from adduction 

to full abduction the joint side fibres become relatively elongated while the bursal-side fibres 

become shortened.51 This may lead to atrophic changes in response to the lack of tensile load.  

Moreover, the special structure of the rotator “cable and crescent” structure (figure 3) enhances 

stress-shielding. It was shown that some tendon fibers of the supraspinatus and infraspinatus run 

perpendicularly over others at some distance from the insertion and form a strong and thick cable 

(C in figure 3).17 This rotator cable delineates the thinner rotator crescent (B in figure 3), shaped 

like a horseshoe, which contains a weaker part of the supraspinatus and infraspinatus tendons 

close to the insertion. The rotator crescent lies laterally from the cable when seen from superior. 

Tendon fibers lying medially from the cable can transmit tensile forces through this rotator cable 

to the insertion on the humerus. Due to the function of the cable, the rotator crescent receives 
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less tensile forces and is relatively underloaded and potentially more prone to atrophy and 

degeneration. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Rotator cable and crescent structure. (B. Mediolateral diameter of crescent; C. 

Rotator cable; S, Supraspinatus; BT, Biceps tendon; I, Infraspinatus; TM, Teres minor) 
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2. CURRENT CONCEPTS IN CONSERVATIVE REHABILITATION OF PATIENTS WITH 

ROTATOR CUFF TENDINOPATHY 

 

Reviews agree that treatment of patients with rotator cuff tendinopathy/ subacromial 

impingement should initially be conservative.45;57 No better outcome was shown after surgery 

compared with conservative treatment.15;16;35;46;47 The available literature is supportive of the use 

of exercise for reducing pain and improving shoulder function.41;55;57 Performing these exercises at 

home may be as effective as supervised exercises.117;119 Manual therapy has shown to augment 

the effect of exercises.7;24;103  

Randomized controlled trials have used a wide variety of rehabilitation protocols which prohibits 

comparison and the use of a conclusive evidence-based gold standard program. Reviews indicate 

that there remains a need for well-defined clinical trials on specific interventions for the 

treatment of subacromial impingement.41  A thorough clinical examination is recommended to 

precede the choice of treatment goals and appropriate techniques and exercises.37 The focus of 

physiotherapeutic treatment is on increasing flexibility from both soft tissue and articular 

structures and improving scapular and rotator cuff muscle performance.37 The rationale behind 

this is to normalize glenohumeral and scapulothoracic kinematics in order to decrease 

impingement and allow the subacromial structures to heal.  

 

 

2.1 Posterior shoulder stretching 

 

Given the evidenced impact of posterior shoulder tightness on shoulder kinematics, increasing 

posterior shoulder flexibility is recommended in rehabilitation of patients with rotator cuff 

tendinopathy associated with subacromial impingement. Both self-stretching and stretching by a 

therapist are used in clinical practice. Despite its common use, evidence on these techniques is 

scarce. 

In literature, stretching the posterior shoulder structures is often part of standardized treatment 

protocols in trials on rehabilitation of patients with subacromial impingement. Patients in the 

study of McClure et al. performed among other strengthening and stretching exercises two 

stretches to decrease posterior shoulder tightness: the towel internal rotation and the cross body 

stretch.74 They found that a gain in internal rotation ROM was correlated with functional 

improvement. 
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Most studies, however, have examined healthy asymptomatic subjects. Manske et al. compared 

4 weeks cross-body self-stretching with and without joint mobilization (dorsal glides) by a 

therapist to decrease posterior shoulder tightness.72 Internal rotation increased in both groups. 

Higher increase was shown when self-stretching was combined with joint mobilization but the 

difference was non-significant. 

Cools et al. compared 3 weeks angular (sleeper stretch, cross body stretch) and non-angular 

(dorsal and caudal glides) stretching, both performed by a physiotherapist in healthy athletes and 

athletes with subacromial impingement.27 Internal rotation ROM increased equally in both 

groups and after both stretching programs. McClure et al. compared two stretching exercises 

frequently used: the cross-body and the sleeper stretch.73 Internal rotation ROM increased to a 

larger but non-significantly different amount after performing the cross-body stretch compared 

with the sleeper stretch. Finally, it was shown that both the sleeper stretch and a horizontal 

adduction muscle energy technique (hold-relax) can immediately improve internal rotation 

ROM.60;80 The idea behind stretching the posterior shoulder structures in patients with 

subacromial impingement is to restore shoulder kinematics and to diminish impingement of the 

rotator cuff. This remains speculative as no evidence is available on the impact of stretching the 

posterior shoulder on glenohumeral and scapular kinematics nor on the size of the subacromial 

space. 

 

 

2.2 Scapular muscle strength training 

 

The association between abnormal scapular kinematics and rotator cuff pathology has been well 

established in literature.66 The trapezius and serratus anterior are the most important muscles for 

restoring scapular motion.5 Exercise protocols should include exercises with selective activation 

of the weaker muscles and minimal activation of the hyperactive muscles. Several studies have 

been performed identifying exercises with a low upper trapezius/lower trapezius (UT/LT), upper 

trapezius/middle trapezius (UT/MT) and upper trapezius/serratus anterior (UT/SA) ratio. Cools et 

al. demonstrated low UT/MT and UT/LT ratio during prone extension, prone horizontal abduction 

with external rotation at 90°, side lying external rotation and side lying shoulder flexion.26 

Ludewig et al. investigated UT/SA ratio during variations of the push up plus exercise.64 This 

exercise is performed like a regular push up but with an additional plus phase, consisting of a 

scapulothoracic protraction and retraction. It is known that this exercise exhibits large serratus 

anterior activity, especially during the “plus” phase at the end of the push up.64 Low ratio UT/SA 

was found during the standard push up plus and the knee push up plus.  Up to now, there are no 
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studies available investigating the effect of an isolated scapular muscle strength training program 

in patients with subacromial impingement related shoulder pain.  

 

 

2.3 Rotator cuff muscle strength training 

 

Strengthening the rotator cuff muscles is recommended to increase the inferior pull onto the 

humeral head. Exercises that have been shown to elicit high rotator cuff muscle EMG activity are 

resisted internal and external rotation with the arm along the body32, internal rotation at 90° of 

abduction33, prone horizontal abduction with external rotation and full can (thumb up) elevation 

in the scapular plane96.  

An exercise that is often used in treatment of patients with subacromial impingement is the 

empty can (thumb down) elevation in the scapular plane. Based on literature, however, it is not 

recommended.95 The empty can exercise elicits a higher amount of middle and posterior deltoid 

activity compared with the full can exercise.96 Moreover, pointing the thumb downward requires 

humeral internal rotation during abduction and this does not allow the greater tuberosity to clear 

from under the acromion.95 Scapular kinematics were also found to be disadvantageous during 

the empty can exercise with scapular winging (increased internal rotation) and increased anterior 

tilting.109 To our knowledge, no studies have investigated the effect of isolated rotator cuff 

strength training in patients with subacromial impingement. 

 

 

2.4 Eccentric training 

 

Next to extrinsic factors, impinging the rotator cuff tendons, intrinsic factors, causing 

degeneration of the tendon, have been shown to contribute to rotator cuff tendinopathy.101 As a 

result, physiotherapy should not only focus on decreasing impingement but should additionally 

address this tendon degeneration. In patella and Achilles tendinopathy, eccentric training has 

shown to not only decrease pain and improve function but also repair tendon tissue.58;71;87 The 

Achilles tendon was shown to respond to eccentric training load with an increased collagen 

production.58 As to rotator cuff tendinopathy, three studies have been executed and have shown 

promising clinical results.8;19;54  

Jonsson et al. investigated the effect of an eccentric empty can (thumb down) abduction exercise 

for the supraspinatus without additional treatment in 9 patients with subacromial 

impingement.54 The exercise was performed at home for 3 sets of 15 repetitions, twice a day, 
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every day of the week for 12 weeks and load was gradually increased to reach the pain-level. Five 

patients were satisfied with treatment and showed significantly less pain and better function 

after 12 weeks of training and at 52-weeks follow-up.  

Bernhardsson et al. investigated the effect of eccentric rotator cuff training added with scapular 

stabilizing exercises and upper trapezius stretching in 10 subjects with subacromial 

impingement.8 The exercises were performed at the same volume and frequency as in the study 

of Jonsson et al. and they were dosed to reach a pain-level between 0 and 5 on a VAS of 10. In 8 of 

10 subjects pain had significantly decreased and in all subjects shoulder function had significantly 

increased after 12 weeks. Due to small sample size and the lack of a control group in both studies, 

conclusions cannot be drawn.  

Recently, Camargo et al. showed good results with an isokinetic eccentric training program in a 

larger group  of patients with subacromial impingement (n=20).19 The shoulder abductors were 

trained twice a week for 6 weeks with eccentric training between 20° and 80° of abduction 

at a speed of 60°/s (3 sets of 10 repetitions). Despite the overall lower volume of the 

training compared with the study of Jonsson and Bernharsson and colleagues, they 

showed significantly decreased pain and improved shoulder function. Change in isokinetic 

parameters however was small with overall small effect sizes. 

Eccentric exercises may be able to uniformly stress a healing area of the tendon in a controlled 

manner, and thereby stimulate healing once an injury has occurred. Possibly these high tensional 

loads onto the fibrocartilaginous tendon provide a signal for the tendon cells to increase 

metabolism and again become stronger to resist tension. It is not clear if a change in 

rehabilitation to eccentric exercises is more efficacious than current techniques. 

 

 

2.5 Kinetic chain approach for shoulder rehabilitation 

 

During daily activities as well as during sports activities, the human body moves like a kinetic 

chain.77 This kinetic model depicts the body as a linked system of interdependent segments, 

often working in a proximal-to-distal sequence to achieve a desired goal at the distal segment. 

Clinicians recognize the need to address the trunk and lower limb muscles during shoulder 

exercises to train the shoulder in a way that it is used during functional activities. During rapidly 

forward reaching with the right arm, for example, a consistent pattern of activation is produced: 

the right tensor fascia latae and rectus femoris are activated, the left semitendinosus and gluteus 

maximus are activated and finally the right erector spinae is activated before the deltoid starts to 

contract.123 Normal motor patterns of forward arm elevation demonstrate ipsilateral activation of 
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hip extensors before deltoid activation.123 Besides functional connections between muscles, 

anatomical connections have been described between synergistic muscles.92 

Despite its wide clinical use, no evidence exists on the effect of exercises integrating the shoulder 

in the kinetic chain during rehabilitation of patients with subacromial impingement related 

rotator cuff tendinopathy.  
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3. OUTLINE AND AIMS OF THE THESIS 

 

Based on available literature it can be concluded that both extrinsic factors, causing subacromial 

impingement of the rotator cuff, and intrinsic factors, causing intratendinous degeneration of the 

rotator cuff, might play a role in patients with rotator cuff tendinopathy. Successful conservative 

treatment of patients with rotator cuff tendinopathy is inextricably linked to profound knowledge 

and understanding of the associated mechanisms.  

 

PART I. MECHANISMS ASSOCIATED WITH ROTATOR CUFF TENDINOPATHY 

 

The first  aim of this dissertation is to further investigate the role of proprioception in patients 

with rotator cuff tendinopathy. 

Dysfunction of neuromuscular control is well documented in patients with subacromial 

impingement. As proprioception provides the information on position, motion and applied 

force, proprioceptive deficits might be associated with dysfunctional neuromuscular 

control. Studies have indicated disturbed kinesthesia and joint position sense in patients 

with rotator cuff pathology. Force sensation, the third submodality of proprioception next 

to kinesthesia and joint position sense, however has never been assessed in patients with 

rotator cuff pathology. Chapter 1 illustrates a study on “The impact of rotator cuff 

tendinopathy on proprioception, measuring force sensation”. 

 

The second aim is to elaborate knowledge on the size and behavior of the subacromial space in 

overhead athletes, a population at risk for subacromial impingement and rotator cuff 

tendinopathy. 

a. The influence of training 

Previous studies showed that the dominant shoulder of overhead throwing athletes differs 

from the non-dominant side, possibly due to adaptation to overhead sports activities. 

These observations are very similar to some changes seen on the injured side of patients 

with subacromial impingement. However, it is not clear how this affects the size of the 

subacromial space. We conducted a descriptive study in which the acromiohumeral 

distance (AHD) was compared between the dominant and non-dominant shoulder of 62 

healthy overhead athletes. Both elite handball players and recreational overhead athletes 

of different sports disciplines were recruited for this study. Results are presented in chapter 

2: “Sonographic evaluation of the acromiohumeral distance in elite and recreational 

female overhead athletes”.  
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b. The influence of muscle fatigue 

Besides adaptations at the shoulders of overhead athletes, functional muscle fatigue 

induced by overhead throwing was postulated to play a role in development of 

subacromial impingement. The shoulder joint obtains very little stability from passive 

structures like the capsule and the ligaments. Hence, mainly shoulder muscles are 

responsible for optimizing kinematics. When fatigued, studies have shown disturbed 

neuromuscular control with changes in kinematics that could compromise the subacromial 

space. A study was performed in which the AHD was measured by ultrasound imaging 

before and after overhead throwing fatigue and in addition, changes in three-dimensional 

scapular position were recorded. Outcome of this study is described in chapter 3: 

“Acromiohumeral distance and three-dimensional scapular position change after overhead 

throwing fatigue”. 

 

c. The influence of posterior shoulder tightness 

One of the adaptations often seen at the dominant side of overhead athletes is posterior 

shoulder tightness, which is associated with internal rotation range of motion loss. 

Previous studies showed that posterior shoulder tightness is related to alterations of 

glenohumeral and scapulothoracic kinematics. The consequence of these alterations for 

subacromial space size remains unexplored. Hence, we recruited 62 recreational overhead 

athletes that displayed an internal rotation deficit compared with the non-dominant side 

and measured the acromiohumeral distance. Chapter 4 presents the results of this study 

on “Quantifying acromiohumeral distance in overhead athletes with glenohumeral internal 

rotation loss and the influence of a stretching program”. 

 

 

PART II. CONSERVATIVE TREATMENT OF PATIENTS WITH ROTATOR CUFF 

TENDINOPATHY 

 

3. The third aim of this thesis was to contribute to evidence on conservative treatment in patients 

with rotator cuff tendinopathy by further investigating three aspects of this treatment: posterior 

shoulder stretching, eccentric training and  scapular muscle balance training. 

 

a. Posterior shoulder stretching in overhead athletes 

Both healthy overhead athletes and subjects with rotator cuff tendinopathy associated 

with subacromial impingement have been shown to regularly suffer from posterior 

shoulder tightness and GIRD. Stretching the posterior shoulder to restore internal rotation 
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ROM is suggested in management of subacromial impingement in overhead athletes. 

Moreover, stretching has been recommended to prevent shoulder injuries and enhance 

sports performance. It is not clear if stretching also affects glenohumeral and scapular 

kinematics and therefore if this would alter the size of the subacromial space. We 

investigated the change of AHD after a 6 week sleeper stretch program in healthy 

overhead athletes. This is the second part of the study presented in Chapter 4: 

“Quantifying acromiohumeral distance in overhead athletes with glenohumeral internal 

rotation loss and the influence of a stretching program”. 

 

b. Scapular muscle balance training in healthy subjects 

To increase muscle strength is an important aim of treatment in patients with rotator cuff 

tendinopathy. In light of enlarging the subacromial space, obtaining correct scapular 

position and motion is crucial. The serratus anterior has been shown to contribute to 

impingement sparing kinematics of the scapula. The challenge is to find exercises that 

selectively activate the serratus anterior with minimal contribution of the upper trapezius 

to improve UT/SA muscle balance. In this view, the knee push up plus is an optimal 

exercise. This exercise is performed like a push up exercise but a plus phase, an additional 

protraction-retraction, is added after the push up. A study was performed in which 

scapular muscle activity was recorded during 7 variations of the knee push up plus. Four of 

these variations were chosen to evaluate the influence of the kinetic chain through leg 

extension. Chapter 5 reports the results of the study “Electromyographic analysis of knee 

push up plus variations: what is the influence of the kinetic chain on scapular muscle 

activity”.  

 

c. Eccentric training in patients with rotator cuff tendinopathy 

Chapter 6 describes a randomized clinical study on eccentric training in patients with 

rotator cuff tendinopathy. Since evidence is growing on the contribution of intrinsic 

degeneration to development of rotator cuff tendinopathy, this should be acknowledged 

in treatment as well. From research on physiotherapy treatment in other tendinopathies, 

like for example Achilles tendinopathy, we’ve learned that eccentric training leads to 

better outcome and even regeneration of tendon tissue. Given the similarities in terms of 

pathology, it could be questioned if these results can be transferred to rotator cuff 

tendinopathy. The study “Does adding an eccentric training program to rehabilitation of 

patients with subacromial impingement result in better outcome? A randomized, clinical 

trial” examined the influence of a traditional rotator cuff training program whether or not 

combined with eccentric training on pain, function and isometric force. 
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ABSTRACT 

Background The impact of rotator cuff tendinopathy and related impingement on 

proprioception is not well understood. Numerous quantitative and qualitative changes in 

shoulder muscles have been shown in patients with rotator cuff tendinopathy. These findings 

suggest that control of force might be affected. This investigation wants to evaluate force 

sensation, a submodality of proprioception, in patients with rotator cuff tendinopathy. 

 

Methods Thirty-six patients with rotator cuff tendinopathy and 30 matched healthy subjects 

performed force reproduction tests to isometric external and internal rotation to investigate how 

accurate they could reproduce a fixed target (50% MVC). Relative error, constant error and force 

steadiness were calculated to evaluate respectively magnitude of error made during the test, 

direction of this error (overshoot or undershoot) and fluctuations of produced forces.  

 

Results Patients significantly overshoot the target (Mean= 6.04% of target) while healthy 

subjects underestimate the target (Mean= -5.76% of target). Relative error and force steadiness 

are similar in patients with rotator cuff tendinopathy and healthy subjects. Force reproduction 

tests, as executed in this study, were found to be highly reliable (ICC 0.849 and 0.909). Errors 

were significantly larger during external rotation tests, compared to internal rotation.  

 

Conclusion Patients overestimate the target during force reproduction tests. This should be 

taken into account in the rehabilitation of patients with rotator cuff tendinopathy. Precision of 

force sensation and steadiness of force exertion however remains unaltered. This might indicate 

control of muscle force is preserved.   

 

Level of Evidence Basic Science Study, Kinesiology Study 

 

Keywords Shoulder, rotator cuff, tendinopathy, proprioception, force reproduction, force 

steadiness, force sensation  
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INTRODUCTION  

Tendinopathy of the rotator cuff shows high prevalence in the population and can be the source 

of considerable pain and disability.8,23 Patients with rotator cuff tendinopathy show numerous 

quantitative and qualitative changes in specific shoulder muscles. Quantitative impairment of 

rotator cuff muscle force was demonstrated in patients with impingement. Larger deficits in 

external rotation force than internal rotation force occur, resulting in muscular imbalance.23,34  

Quality of force production was also found to be changed in patients with impingement. A 

bilateral decline in time to peak torque of the internal rotators was shown in patients by Matiello-

Rosa et al.25 During elevation bilateral deficits in muscle contraction parameters were shown in 

patients. Acceleration time and time to peak torque are delayed, total work and power are 

reduced and peak torque has decreased in subjects with subacromial impingement when 

compared to asymptomatic subjects.5 

Neuromuscular dysfunction is expressed in the different muscle recruitment patterns during 

elevation and external rotation, shown in patients with subacromial impingement. Common 

findings include decreased activity in the rotator cuff muscles and serratus anterior and increased 

activity in the middle deltoid and the upper trapezius.5,7,12,22,28  

 

Good neuromuscular control depends on adequate proprioceptive information.14 Investigations 

on proprioception in patients with rotator cuff tendinopathy are limited. Machner et al. showed 

impaired kinaesthesia, defined as the perception of movement, in the affected side compared to 

the contralateral side in subjects with subacromial impingement.24 Safran et al. also 

demonstrated disturbed kinaesthesia in throwers with rotator cuff tendinopathy and suggested 

that increased nociceptor activity in the painful shoulder overrides proprioceptive input.29  

 

Proprioception has three submodalities. Besides kinaesthesia and joint position sense, force 

sensation is an important feature for good neuromuscular control. It is defined as the ability to 

appreciate and interpret force applied to or generated within a joint.26 The level to which each 

muscle is activated during movement plays an important role in coordinating movement. Many 

organs are thought to encode force sensation including Golgi tendon organs and muscle spindles 

as well as central mechanisms.4,14 Dover et al. developed a force reproduction test to measure 

force sensation of the shoulder internal and external rotators using an isokinetic device and 

showed high reliability and reproducibility of this test.13 

 

Considering the above described quantitative and qualitative changes in rotator cuff muscles and 

the related neuromuscular recruitment pattern alterations, it is possible force sensation has 

changed in patients with rotator cuff tendinopathy. The rotator cuff plays an important role in 
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opposing the superior translation force of the deltoid.32,33 A lack of good control of muscle force 

could compromise dynamic stability of the shoulder joint resulting in altered glenohumeral 

kinematics. Anterosuperior translation of the humerus has already been demonstrated in 

patients with rotator cuff tendinopathy.21  

 

The purpose of this study is to measure the accuracy of force sensation in the internal and 

external shoulder rotators in patients with rotator cuff tendinopathy with an isometric force 

reproduction test. Magnitude of the error made during the force reproduction test, whether 

subjects over- or underestimated force and the extent to which subjects could exert a continuous 

force without fluctuations (i.e., force steadiness) were of interest. It was hypothesized force 

sensation would be different in the affected compared to the non-affected shoulder and would 

differ between patients and asymptomatic subjects. The influence of age and pain were of 

interest. 

 

MATERIALS AND METHODS 

Subjects  

Sample size was estimated based on variability of pilot data from force reproduction tests (mean 

group A: 19,01; mean group B: 12,02; standard deviation: 4,5). SPSS Sample Power 3 was used. A 

probability level of α=0.05 and a statistical power of p=0.80 required 30 subjects in each group. 

Thirty-six subjects with unilateral rotator cuff tendinopathy were recruited by a specialized 

shoulder surgeon at Ghent University Hospital (Ghent, Belgium). The inclusion criteria were: 

unilateral pain for at least 3 months in the anterolateral region of the shoulder, pain score 3 or 

more out of 10 on Visual Analogue Scale, painful arc, 2 out of 3 impingement tests positive 

(Hawkins, Jobe and/or Neer), 2 out of 4 resistance tests painful (full can abduction at 90°, resisted 

abduction at 0°, resisted external or internal rotation) and pain with palpation of the 

supraspinatus and/ or infraspinatus tendon insertion.9 The exclusion criteria were: demonstration 

of partial or full ruptures of the rotator cuff by technical investigation (ultrasound or MRI), history 

of shoulder surgery, fracture or dislocation, traumatic onset of the pain, osteoarthritis, severe 

glenohumeral instability or scapular dyskinesia. Patients with concomitant disorders, such as 

cervical pathology or systemic musculoskeletal disease, were also excluded from the study. No 

physical therapy nor corticosteroid injections could have been received within 2 months prior to 

the study. Demographics of the patient group are presented in table 1. There were 22 female and 

14 male patients. All but one was right-hand dominant. Thirty-one patients had pain in their 

dominant shoulder, 5 in their non-dominant shoulder. 
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To be included in the asymptomatic group, subjects could not perform overhead sports nor any 

other upper limb force training for more than 5 hours a week and could not have been operated 

at their shoulder or neck in the past. No one of the asymptomatic group had shoulder pain during 

the year previous to the investigation. Thirty subjects were included (Table 1): 15 female and 15 

male. All but one was right handed. They were matched for age to the symptomatic group.  

 

 

 Patients   Healthy subjects  

 Mean  SD Mean  SD 

Age 43,13 (range 23-68) ±13,8 41,45  (range 21-65) ±13,1     

Height 169,61  ±9,40 171,21  ±8,13 

Weight 72,17  ±12,51 69,10  ±12,27 

Table 1. Demographics (SD= standard deviation, age in years, height in cm, weight in kg) 

 

 

The Committee on Ethics of Ghent University approved the study (Belgian registration number: 

B67020084347) and informed consent was obtained from each subject. This study is part of a 

larger study, registered on ClinicalTrials.gov (NCT00782522). 

 

Instrumentation and procedures 

All tests were completed at the laboratory of the Department of Rehabilitation Science and 

Physiotherapy of Ghent University. Painful and healthy arms of the patients were randomly 

chosen to start evaluation as was the order of internal and external rotation tests. In 

asymptomatic subjects only the dominant arm was tested. Force reproduction was retested in 

this group to look at test-retest reliability. Testing sessions were separated by 6 weeks. The order 

of external and internal rotation was the same at each testing session.  

An isokinetic dynamometer (Biodex Multijoint System 3, Biodex Medical Systems, Inc., Shirley, 

NY) was used to investigate force sensation with a force reproduction test.13 Figure 1 illustrates 

the experimental setup. Subjects were seated with the upper arm at 45°of elevation in the 

scapular plane and the elbow flexed 90°. The olecranon was aligned over the rotation axis. 

Because of technical issues, the lower arm was positioned vertically so gravity force was zero. 

Subjects grasped the handle of the shoulder-elbow attachment in a neutral position between 

pro- and supination.  
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Figure 1. Experimental setup 

 

 

The dynamometer was set to gather data in the isometric mode. Maximal voluntary isometric 

contraction (MVIC) was obtained first. Three trials of 5 seconds with an equal time of rest in 

between were performed. Coefficient of variance over the three trials was not allowed to be 

higher than 15%.10 After the MVIC test a resting period of 5 minutes was provided. The highest 

peak torque (PT) of the three trials was marked. Target for matching of force was set at 50% of 

that PT and a line was drawn at this target in the computer screen.11,13,19 Previous authors 

suggested that using 50% of MVIC generates less error with reproduction.19 Subjects were asked 

to produce force until the line of their force coincided with the target. Three trials were 

performed with visual feedback. After this, subjects were asked to close their eyes and produce 

the same amount of force for 3 more trials of 5 seconds. Subjects scored the pain they felt during 

the test on a VAS (0-10). 

 

Data reduction 

Raw data were extracted from the Biodex as text files. Means and standard deviations (SD) were 

calculated using MATLAB Version 7.8 (R2009a) (Mathworks Inc., Natick, MA). To measure the 

accuracy of force sensation, relative and constant error scores were chosen. The middle three 

seconds of each trial were used for analysis.  

First, MATLAB calculated the deviation of the force exerted by the subject from the target, at 

each point in time, ignoring positive (overshoot) and negative (undershoot) values. Then, mean 

deviation was calculated over three trials. Finally, this error was expressed relative to the target 

to represent relative error (RE) (Table 2). Like this, comparison between subjects is allowed, as 
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RE represents the magnitude of error, proportional to their target, which depends on their 

maximal isometric force. .  

To express direction of mismatch, constant error (CE) was calculated (Table 2). Mean error over 

the three trials was calculated by subtracting the target from the mean force produced by the 

subjects. This was also expressed as a proportion of the target. If this constant error score is 

positive, it means the target was overestimated and vice versa. 

Steadiness of force reproduction is represented by the coefficient of variation (CV) (Table 2). 

This was calculated by averaging the SD over three trials. CV was expressed as a proportion of the 

mean force produced during the trials and like this, represents the extent to which subjects are 

able to produce a continuous force with minimal fluctuations. 

 

 

RE 
(|error trial 1|+ |error trial 2|+ |error trial 3|) /3 

                      Target 

CE 
(error trial 1 + error trial 2 + error trial 3) /3 

                      Target 

CV 

 

(SD trial 1 + SD trial 2 + SD trial 3) / 3 

(Mean trial 1+ Mean trial 2 + Mean trial 3) /3 

Table 2. Formulas for calculation of Relative Error (RE), Constant Error (CE) and Coefficient of 

Variance (CV) (SD= standard deviation) 

 

 

Statistical analysis 

Data were analyzed using PASW Statistics 18 (SPSS Inc., Chicago, IL). A level of 5% was used to 

determine significant differences. Shapiro-Wilk test showed normal distribution of all data.  

Test-retest intraclass correlation coefficients (ICC) were calculated for mean internal and external 

rotation force generated during force reproduction tests in asymptomatic subjects. Standard 

error of measurement (SEM) was calculated with the formula SD x √1-ICC where SD was the 

standard deviation of mean force during the tests. 

For each dependent variable (RE, CE and CV), a general linear model (GLM) univariate analysis of 

variance (ANOVA) test was constructed with “group” (2 levels: patient and healthy) or “side” (2 

levels: painful and healthy side) and “direction” (2 levels: internal and external rotation) as fixed 

factors, and age and pain as cofactors. Post-hoc test were performed with correction for multiple 

comparisons (Bonferroni). 
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RESULTS 

ICC of force reproduction tests 

ICC showed high reliability between the two testing sessions for internal (Cronbach’s alfa= 0.849) 

as well as for external rotation (α= 0.909) force reproduction testing in asymptomatic subjects. 

SEM was 2.34N for the internal rotation force reproduction test and 1.97N for the external 

rotation force reproduction test.  

 

Patients compared to healthy subjects  

Results of comparing force sensation between patients and healthy subjects are presented in the 

left part of figure 2. There was no significant difference in RE between groups. (F=1.915, p=0.17). 

RE did show significant difference between internal and external rotation (F=6.980, p=0.01). Post 

hoc tests revealed higher errors during the external rotation tests (18.19% of the target) than 

during the internal rotation (13.69% of the target). CE was significantly different between groups 

(F=5.127, p=0.026). Post-hoc tests showed that patients overestimate the target (6.04% of 

target) while asymptomatic people rather underestimate the target (-5.76% of target). CE was 

not different between both directions (F=0.291, p=0,59).  

CV was not significantly different between patients and healthy subjects (F=0.508, p=0,478). CV 

was different between both directions of the test (F=7.048, p<0.01). Post hoc tests showed less 

smooth force production during external rotation force reproduction (11.52% of mean force) 

compared to the internal rotation force reproduction test (8.28% of mean force). There was no 

significant influence of the cofactors age and pain. 

 

Painful side compared to healthy side in patients 

Results of comparing force sensation at the painful shoulder compared to the healthy shoulder 

are presented in the right part of Figure 2. When analyzing RE, CE and CV of force reproduction in 

patients, there was no significant difference between painful and healthy side (F=0.090, p=0.77; 

F=0.975, p=0.33; F=0.540, p=0.46). Patients will not make larger errors with their painful shoulder 

and will not over- or underestimate their force differently in their painful side compared to their 

asymptomatic side. Smoothness of shoulder muscle contraction appears to be unaffected in the 

injured shoulder of patients compared to their asymptomatic side. RE was different between the 

internal and external rotation test (F=4.007, p=0.04) with a higher RE during the external rotation 

force reproduction test (18.76% of the target) compared to the internal rotation force 

reproduction test (14.68% of the target). CE was not different between both directions (F=1.107, 

p=0.30).  
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CV was significantly different between directions (F=10.157, p=0.002). Post-hoc tests revealed 

less steadiness of force during external rotation (11.98% of mean force) when compared to 

internal rotation (8.04% of mean force). Age and pain showed no significant influence.  

 

Figure 2. Mean error scores for internal and external rotation force reproduction tests in the 

painful compared to healthy side in patients (left) and in patients compared to healthy 

subjects (right). 
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DISCUSSION 

The key finding of this investigation is that, regardless of direction of the test, patients overshoot 

the target compared to asymptomatic subjects. However, no difference was found between the 

painful and healthy side in patients. Overestimation of muscle forces, required for a given task, 

might further aggravate the symptoms and should be taken into account during rehabilitation.  

As to magnitude of error and steadiness of isometric force production, no differences were found 

between the painful and healthy side of patients, nor between patients and asymptomatic 

subjects. Good control of force is preserved in patients with rotator cuff tendinopathy. 

 

This is the first study investigating force reproduction in patients with rotator cuff tendinopathy. 

Previously, asymptomatic individuals have been shown to overrate effort during force matching 

tasks after experimentally inducing pain, fatigue and/or muscle damage in the tested 

limb.3,18,27,35,36  

Research on how musculoskeletal pathology changes force sensation is rather scarce. 

Descarreaux et al. investigated isometric lumbar flexion and extension force reproduction at 50 

and 75% of MVC in patients with low back pain, compared to asymptomatic control subjects.11 

Patients were trained to reproduce the force within an error margin of 10% before the test was 

taken. The accuracy level of the test in patients was similar to that in control subjects. Pain, 

however, had an important influence on time to reach peak forces. The authors speculate 

patients possibly limit the rate of force development to avoid an increase of pain. Descarreaux et 

al. could not show overestimation by patients with low back pain, but the fact they were trained 

in advance to match the target gives a plausible explanation for this. Furthermore, accuracy level 

was calculated only by comparing peak force during the test with the target. Possibly, this is not a 

representative method for describing the error in reproducing the target. 

Hortobagyi et al. examined quadriceps force accuracy and steadiness in patients with knee 

osteoarthritis.15 Patients demonstrated less accuracy and steadiness than their asymptomatic 

peers for both concentric and eccentric isokinetic conditions. Corresponding with our results, the 

error in osteoarthritis patients also resulted from overshooting the target. No differences in 

accuracy, nor steadiness were found for the isometric condition.  

 

No studies have investigated force sensation in patients with shoulder pathology. However, two 

studies were found that examined abduction force steadiness in patients with subacromial 

impingement syndrome. Consistent with our results on isometric external and internal rotation 

force steadiness, both studies showed preserved steadiness during isometric abduction of the 

shoulder.2,6 Subjects were allowed to visually control the force they produced relative to the 

target so that force sensation was not tested in these studies. Bandholm et al. did find reduced 
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steadiness during isometric abduction in asymptomatic subjects after experimentally inducing 

pain.1 A possible explanation for this discrepancy is that induction of experimental pain does not 

reflect adaptations to chronic pain.  

 

These data cannot point out the neurophysiologic origin of the observed differences. Force 

sensation arises mainly from a combination of sensation of tension by peripheral Golgi tendon 

organs and central sensation of effort.4,14,17 Overestimation of force can possibly point at reduced 

sensitivity of proprioceptors. Muscle changes due to chronic pathology alters human Golgi 

tendon organ characteristics. A reduction in both muscle spindle and Golgi tendon organ size and 

numbers has been demonstrated after injury and disuse.20,30 The discovery of a significant 

positive correlation between Golgi tendon organ firing rates and muscle fiber cross-sectional area 

by Spielmann and Stauffer also suggests that Golgi tendon organ function could be affected in 

chronic musculoskeletal conditions where muscle atrophy is evident.31 Histological research of 

the deltoid and supraspinatus muscle by Irlenbusch et al. has shown changes in fast and slow 

twitch fibres in patients with impingement.16 This could support the above described theory.  

However, the fact that this deficit in force sensation is not different from the asymptomatic arm 

argues against this theory. Next to peripheral sensation of tension by Golgi tendon organs, there 

might be an important role for central sensation of effort. In this view, it is possible that force 

sensation depends on the power of the agonists. A more powerful muscle group provides a 

feeling of less effort than a weak muscle group. Possibly, the asymptomatic dominant arm 

induces a feeling of light effort whilst the non-dominant arm produces a feeling of more effort 

needed during force application. When the dominant arm is injured, which was the case in most 

of the patients, a feeling of larger effort is produced which could lead to overestimation of the 

target. Further research is necessary to confirm this.  

 

Regardless of subject group, significant differences in force steadiness and magnitude of errors 

were noted between the two muscle groups tested. Starting position could be responsible for 

this. The external rotators were placed in a shortened position while the internal rotators were in 

a lengthened position.  

The relationship between a muscle’s length and its isometric tension generating capacity 

depends on the degree of overlap between its actine and myosine filaments. Muscle length is 

therefore capable of influencing force matching acuity. This could give an explanation for the 

larger relative error and the less steady force production during external rotation tests than 

during internal rotation tests. It is worth noting that, in the current study, both subject groups 

reported the external rotation force reproduction test as more difficult. 
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Dover and Powers could not demonstrate this difference between internal and external rotation 

force reproduction.13 This can be explained on the basis of their error calculation method. They 

showed higher peak torques during maximal isometric internal rotation force tests compared to 

external rotation thus higher target forces during internal rotation force reproduction tests, but 

equal absolute errors during the force reproduction tests. This implies larger relative error scores 

during external rotation than during internal rotation force reproduction, which is nonetheless in 

line with the results of this study.  

 

This study offers a new approach on the evaluation of force sensation, describing magnitude of 

error, direction of error and steadiness of produced forces. Future research should investigate the 

same parameters during concentric and eccentric internal and external rotation in patients with 

rotator cuff tendinopathy. Correlation between a muscle group’s force and its ability to reproduce 

a target is of interest. Moreover it would be interesting to link force reproduction errors to 

electromyographic activity of shoulder muscles during the tests. This could provide insight into 

responsible mechanisms for overshooting the target.  

 

CONCLUSION 

The present study investigated the impact of rotator cuff tendinopathy on proprioception, 

measuring force sensation. It was shown that patients overestimate target forces and produce 

higher forces than needed in direction of external as well as internal rotation. Rehabilitation 

programs should take this finding into account. Precision of force sensation and steadiness of 

force exertion however remains unaltered. This might indicate control of muscle force is 

preserved. This study provides a new approach on evaluation of proprioception in shoulder 

patients. Further research is necessary to elaborate this.  
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ABSTRACT 

Objective To compare the acromiohumeral distance (AHD) and the change of this distance 

during abduction between the dominant and non-dominant shoulders of healthy female 

overhead athletes and to compare AHD between elite and recreational female athletes. 

 

Design Case-control study 

 

Setting Laboratory, institutional 

 

Independent Variables “side” (dominant - non-dominant), “group” (elite – recreational athletes) 

and “degree of abduction” (0 – 45 - 60°) 

 

Participants Sixty-two female overhead athletes participated in this study: 29 elite handball 

players and 33 recreational overhead athletes of different sports disciplines (volleyball, water 

polo, squash and badminton). 

 

Main outcome measures AHD was measured at 3 positions of abduction using ultrasound: at 0, 

45 and 60° of abduction. 

 

Results AHD measurements showed good test-retest reliability (ICCs between 0.88 and 0.92). In 

all overhead athletes, the AHD was significantly larger on the dominant side compared to the 

non-dominant side, at all positions of abduction (Mean difference=0.94±0.18mm). Significant 

reduction of the AHD during abduction occurred relative to the initial size at 0° of abduction, at 

both sides. When comparing elite and recreational athletes, the AHD was significantly larger in 

elite athletes (Mean difference=0.92±0.47mm). Moreover, significantly less reduction occurs 

during the first degrees of abduction (0°-45°) in elite athletes (9.37±2.17% reduction) compared 

to the recreational athletes (17.68±2.03% reduction).  

 

Conclusions The AHD is larger on the dominant side compared to the non-dominant side and in 

elite female athletes compared to recreational female athletes. Moreover, less reduction of the 

AHD occurs in the elite athlete group during the first 45° of abduction.   

 

Keywords Shoulder motion, shoulder injuries, ultrasound 
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INTRODUCTION 

During overhead throwing, the shoulder acts like a funnel to transmit all forces collected in legs 

and trunk to the ball. Optimization of this process needs delicate balancing between mobility and 

stability. Moreover, smooth and coordinated movement in the glenohumeral and 

scapulothoracic joint is required to preserve subacromial space in order to allow optimal rotator 

cuff functioning. It is believed that when this balance is disturbed, the rotator cuff tendons are 

impinged between the coracoacromial arch and the humeral head.1,2 

 

The overhead throwing shoulder has been shown to adapt to these high demands in a specific 

way.3 Several studies have consistently reported changes in the mobility pattern of the 

glenohumeral joint of overhead throwing athletes. The dominant side shows increased external 

rotation mobility, combined with decreased internal rotation mobility compared to the non-

dominant side.4-6 This last phenomenon is called glenohumeral internal rotation deficit (GIRD) if 

the internal rotation is decreased for 20° or more compared to the non-dominant side.7 GIRD has 

also been shown in patients with subacromial impingement and is believed to be part of the 

multifactorial etiology of rotator cuff tendinopathy.8-10 Through increased anterior and superior 

translation of the humeral head, the loss of internal rotation could contribute to narrowing of the 

subacromial space.11,12 

 

Next to the glenohumeral joint, the scapulothoracic joint also appears to be influenced by sports 

activity.13 Comparing the resting position of both scapulae in overhead athletes shows the 

dominant scapula is more protracted, internally rotated and anteriorly tilted.10,14 These scapular 

position alterations have also been found to result in diminished size of the subacromial 

space.15,16 However, during active elevation, athletes show more upward rotation of the scapula 

on the dominant shoulder.17,18 This rather suggests elevation of the acromion enlarging the 

subacromial space.19 

Other adaptations shown in overhead athletes, like muscle imbalances of the rotator cuff and 

scapular muscles20-23 and shortening of the pectoralis minor18, are also able to influence the size 

of the subacromial space.  

To our knowledge, no studies are available that describe the acromiohumeral distance (AHD), 

which is a two-dimensional (2D) measure for the size of the subacromial space, in the dominant 

and non-dominant shoulders of overhead athletes. Therefore, the objective of this study is to 

compare the AHD and change of the AHD during abduction by real-time ultrasonographic 

measurements between the dominant and non-dominant shoulders of female overhead athletes 

and to compare between elite and recreational female athletes. 
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METHODS 

Subjects 

Sixty-two overhead athletes participated in this study. Twenty-nine female elite handball players 

who were competing in the highest division of the Dutch Handball League and 33 female 

recreational overhead athletes of four different sports disciplines (volleyball, water polo, squash 

and badminton) were included. Athletes with shoulder or elbow pain within 6 months prior to 

testing were excluded. Other exclusion criteria were neck complaints, traumatic injury at the 

upper limb and previous shoulder surgery. Both dominant and non-dominant shoulders were 

tested. Only female athletes were recruited to control for gender differences.24 

 

Testing Procedure 

Each athlete filled in a questionnaire to check exclusion criteria and register demographic data 

(age, weight and height) and sports specific information (sports discipline, years of experience, 

hours of exposure/week, dominant arm).  

Sonographic images were obtained by a single investigator, specialized in shoulder 

ultrasonography, using a Colormaster 128 EXT-IZ (Telemed UAB, Vilnius, Lithuania). A 5-10 MHz 

linear transducer (HL9.0/40/128Z) was used. Subjects’ positions were standardized and corrected 

before the start of ultrasound scanning. They were seated upright without back support, their 

feet flat on the ground. When scanning the subacromial space at 0° of shoulder abduction, 

subjects were asked to keep their arms relaxed along their body with the ulnar side of their hand 

supported on their thighs and the thumbs pointing upwards. When imaging the subacromial 

space at 45 and 60° of shoulder abduction, subjects had to actively keep their arm in this position 

with the elbow flexed 90° and the hand in neutral position with the thumb pointing upwards. To 

assure that the exact amount of abduction was maintained during measurements, a belt, fixed to 

the chair and hanging around the subjects’ lower arms, was adjusted to this position and subjects 

were asked to keep this belt just straight, without pulling at it.25 (Figure 1) This was visually 

controlled by inspecting the amount of pressure of the belt onto the soft tissues of the lower arm. 

The amount of abduction was verified with an AcumarTM digital inclinometer (model ACU360, 

Lafayette Instrument Co.; Lafayette, Indiana). The transducer was positioned in the coronal 

plane, parallel with the long axis of the humerus, at the location at which the acromiohumeral 

distance was least.15,25 Scanning started at random on the dominant or non-dominant side. To 

investigate test-retest reliability, the group of recreational athletes was reassessed after 6 weeks. 

Images were saved on the US unit for later AHD measurements. 

 



 

 

CR Chapter 2 

 

Figure 1. Subject position and probe placement during ultrasonographic AHD measures. 

 

Echowave II Software was used for measuring distances after all images were obtained. AHD was 

defined as the tangential distance from the most lateral part of the acromion to the humeral 

head. (Figure 2) Images were labeled as being left or right side of the athlete. The examiner was 

unaware if the subject was left or right handed when measuring the distances.  

 

 

Figure 2. Measurement of the AHD on ultrasound image. 

 

Percentage of narrowing during abduction was calculated by subtracting the acromiohumeral 

distance at the highest abduction degree from the distance at the lower degree and normalizing 

over the acromiohumeral distance at the lowest ((AHD at 45°- AHD at 0°)/AHD at 0°; (AHD at 

60°- AHD at 45°)/AHD at 45°; (AHD at 60°- AHD at 0°)/AHD at 0°). Like this, the percentage of 

decrease of the acromiohumeral distance is expressed in function of the original size and inter-

individual comparison is allowed. 
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Statistical Analysis 

SPSS 19 (SPSS Inc., Chicago, Illinois) was used for statistical analysis. All p-values were two-tailed 

and considered significant when <0.05. The Shapiro-Wilk test showed normal distribution of the 

data.  

Demographic and sports characteristics were compared between groups with independent 

samples t-test. 

Test-retest reliability analysis included intraclass correlation coefficient (ICC1.k) calculation and 

comparing means with paired samples t-tests. Standard error of measurement (SEM) was 

calculated with the formula pooled SD*√(1-ICC). 

Repeated measures analysis was performed on the AHD measures with “side” (2 levels: 

dominant, non-dominant) and “degree of abduction” (3 levels: 0°, 45° and 60°) as within-subjects 

factors and “group” (2 levels: elite athletes, recreational athletes) as between-subjects factor. 

Post-hoc analysis was done by the software with Bonferroni correction for multiple comparisons. 

The same analysis was done with the percentages of reduction of the AHD between 0 and 45°, 45 

and 60° and 0 and 60°. 

 

ETHICAL CONSIDERATIONS 

The study was approved by the Ethical Committee of the Ghent University Hospital and is part of 

a study registered at Clinicaltrials.gov (NCT01266278). All subjects voluntarily participated and 

signed an informed consent. 

 

RESULTS 

Subject Characteristics 

Demographic and sports related characteristics are displayed in Table 1. Statistical analysis 

showed no significant difference between groups for weight, height and years of experience. 

Groups were different for age and weekly hours of sports activity. The elite athlete group was 

younger (Mean difference= 3.9 ±0.6 years) and played significantly more hours a week (Mean 

difference= 11.0 ±0.8 hours/week). 
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Table 2. Demographic and sports related characteristics of the overhead athletes. 

 Handball Elite 

(N=29) 

Recreational Athletes 

(N=33) 

  Mean SD Mean SD 

Age (years)* 17.9 1.5 21.8 2.6 

Height (cm) 173.7 5.8 170.8 5.6 

Weight (kg) 69.7 6.1 66.3 7.1 

Experience (years) 11.6 2.3 10.1 3.6 

Sports activity (hours/ week)* 17.0 3.3 6.0 2.9 

*Significant differences between groups were found for age and sports activity 

 

Test-retest reliability of ultrasonographic AHD measures 

ICC was 0.92 for AHD measures at 0°, 0.88 at 45° and 0.91 at 60° of shoulder abduction. Means 

were not significantly different between the two time points. Differences between measures 

were very small: 0.03 ±1.1mm, 0.07 ±1.16mm and 0.05 ±1.2mm for the AHD measures at 0, 45 and 

60° respectively. SEM was equal to 0.54mm at 0° of abduction, 0,87mm at 45° of abduction and 

0.75mm at 60° of abduction. 

 

AHD measures 

 “Side” (p<0.001; F=26.51) and “group” (p=0.032; F=4.29) showed significant influence on the 

AHD (Table 2). 
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Table 3. Mean acromiohumeral distance (AHD) measurements (mm) at 0°, 45° and 60° of 

abduction and absolute reduction of AHD from 0° to 45° and from 45° to 60° of abduction. 

(D= dominant; ND= non-dominant; Abd= abduction; SD= standard deviation; 95%CI= 95% 

confidence interval) 

 
Handball Elite Recreational Athletes 

 D ND  D ND 

Abd 

Mean 

(SD) 95%CI 

Mean 

(SD) 95%CI 

Mean 

(SD) 95%CI 

Mean 

(SD) 95%CI 

0° 

12.5 

(2.1) 

11.9 - 

13.1 

11.3 

(1.7) 

10.7 - 

12.0 

11.7 

(1.6) 

11.1 -

12.3 

11.2  

(1.7) 

10.6 - 

11.8 

45° 

11.3 

(2.8) 

10.4 - 

12.2 

10.2 

(2.1) 

9.5 - 

10.9 

9.7 

(1.9) 

8.9 -

10.6 

9.0 

(1.6) 

8.4 - 

9.7 

60° 

10.5 

(3.0) 

9.6 - 

11.4 

9.1 

(2.3) 

8.3 - 

9.6 

9.3 

(1.8) 

8.5 -

10.1 

8.4 

( 2.1) 

7.7 - 

9.2 

0-

45° 

1.2 

(2.4) - 

1.1 

(1.7) - 

1.8 

(1.7) - 

  2.2 

(1.8) - 

45-

60° 

0.8 

(1.7) - 

1.1 

(1.8) - 

0.4 

(1.3) - 

0.6 

(1.7) - 

 

 For both groups the AHD was found to be larger in the dominant side compared to the non-

dominant side at all degrees of abduction (Mean difference= 0.94 ±0.18mm; 95%CI 0.57 - 1.30). 

Second, it was shown that the AHD was larger in elite handball athletes compared to recreational 

athletes, independent of side and at all degrees of abduction (Mean difference= 0.92 ±0.47mm; 

95%CI 0.08 - 1.75). 

 

Reduction of the AHD during abduction 

In both groups “degree of abduction” had a significant influence on the AHD (p<0.001; 

F=92.94).(Figure 3)  
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Figure 3. Reduction of acromiohumeral distance from 0° to 45°, and 0° to 60° of abduction (% 

relative to initial size at 0° of abduction; Mean (SD)) 

 

 

Post hoc tests showed that the AHD significantly reduces from 0 to 45° abduction (p<0.001; 

Mean difference=1.64 ±0.19mm; 95%CI 1.17-2.10) and from 45 to 60° of abduction (p<0.001; 

Mean difference= 0.73 ±0.14mm; 95%CI 0.37-1.08).  

In both groups there was no significantly different amount of reduction of the AHD between the 

dominant (12.25% ±1.26) and non-dominant side (14.65% ±1.54) (p=0.137; F=2.27). (Figure 3) 

   

Percentage reduction of the AHD during abduction differed significantly between groups at the 

range of 0-45° of abduction (p=0.01; F= 4.81). (Figure 3) When moving the arm from 0 to 45° of 

abduction, the AHD diminishes 9.37% ±2.17 in the elite athletes compared to 17.68% ±2.03 in the 

recreational athletes. There was no significant difference between both groups in the range from 

45 to 60°.  

 

DISCUSSION 

The purpose of this study was first to identify the AHD and reduction of AHD during abduction 

comparing dominant with non-dominant shoulders of female overhead athletes and to compare 

between elite and recreational female athletes.  

This study demonstrated that in both groups the AHD on the dominant side was 0.94±0.18mm 

larger than that on the non-dominant side in all test positions. When comparing elite and 

recreational athletes, the AHD was 0.92±0.47mm larger in elite athletes, who trained significantly 

more hours than the recreational athletes. Considering SEM is a threshold for detecting a true 
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change rather than error, the detected differences are higher than the calculated SEM of 0.54, 

0.87, and 0.75mm at respectively 0°, 45° and 60° of abduction.  

 

To our knowledge, this is the first study to identify the AHD on the dominant and non-dominant 

side of elite and recreational athletes. Two previous studies investigated the difference in AHD 

measures from ultrasonography-generated images between overhead athletes and non-athletes. 

Silva et al. found a smaller size in junior tennis players (8.79±1.52mm) compared to controls 

(9.80±1.40mm).15 It should be noted that the tennis players were younger (mean age 14 years) 

than our population and that 43.4% of the tennis players and 20% of the control group presented 

with scapular dyskinesia, defined as visual observation of static or dynamic winging of the 

scapula. Silva et al. found a smaller AHD in subjects with dyskinesis when the arm moves from 0° 

to 60° but no information is provided on the actual AHD at 0° of abduction in these subjects. 

Wang et al. compared the AHD of 12 uninjured male baseball players with 16 controls and found 

contrary to Silva et al. that AHD was significantly larger in the athletes (8.8±3.5mm vs. 

5.6±1.5mm).26 Comparing the mean AHD values of Silva et al. and Wang et al. with ours is not 

appropriate since their choice of reference points to measure the AHD differed slightly from ours, 

which resulted in overall lower mean values. In both studies no information is provided on the 

difference of AHD between dominant and non-dominant side in the athletes. However in the 

study of Wang et al. mean values are presented in the tables of the uninjured athletes’ dominant 

(8.8±3.5mm) and non-dominant side (7.9±2.5mm) which show the same differences as found in 

our study. No reports were found on statistical analysis of this difference. Because of these 

conflicting results of Silva et al. and Wang et al., no conclusions can be drawn on the AHD in 

athletes compared to non-athletes. Small sample sizes and the lack of a consistent standardized 

method to measure AHD might be important reasons for the varying results. The lack of a control 

group with non-athletes is a limitation of our study.  

 

In line with other studies, this study showed that the AHD significantly reduces when the arm 

moves from 0 to 45 and to 60° of abduction.15,25 This narrowing occurs to the same amount on 

the dominant (12.25% ±1.26) and non-dominant side (14.65% ±1.54) of the athletes, relative to 

the initial size in neutral abduction. When we compare elite with recreational athletes results 

show significantly less narrowing during the first 45° of abduction in elite athletes (9.37% ±2.17) 

compared to recreational athletes (17.68% ±2.03). The absolute difference in reduction between 

groups is small at the dominant side (0.6mm) and larger at the non-dominant side (1.0mm). 

Clinical relevance of this finding still needs to be determined.  
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The relationship of a larger AHD and less narrowing during abduction to the risk of developing 

impingement symptoms is unknown. Patients with rotator cuff disease have shown smaller AHD 

measures compared to healthy controls from ultrasonography generated images as well as from 

MRI and radiographs.27 Desmeules et al. have described a trend for greater narrowing of the 

subacromial space in patients with rotator cuff tendinopathy compared to healthy controls when 

moving the arm to 45° of abduction.28 This is also consistent with results from previous studies 

using MRI to measure AHD.29,30 This suggests that the results found in this study are in favor of 

the dominant side of the overhead athletes and in favor of the elite handball players.  

In the present study, healthy athletes were examined so results may not be applied to athletes 

with shoulder pain. Prospective research is needed to determine if a larger AHD and less 

narrowing is related to a decreased risk for impingement.  

Caution should be taken when applying results to other genders or sports disciplines. Groups 

were matched for gender as it was shown that gender is related to the size of the AHD. Graichen 

et al. have shown that females have a smaller subacromial space than males.24 This limits 

extrapolation of the results to a male population of overhead athletes. The different sports 

disciplines of both groups should be mentioned as a limitation of the study. This could have 

influenced the difference between groups.  

Furthermore, it should be noted that measures of AHD captured with ultrasound are 2D linear 

measures that do not take into account what may occur at other aspects or volume of the 

subacromial space. Sonographic AHD measures were shown to be sensitive to a change of 

posture and muscle activity. Kalra et al. have suggested for example that sitting in a more upright 

posture increases the AHD.31 Hinterwimmer et al. showed that adducting muscle activity also 

increases subacromial space width.32 We accounted for these possible influences as much as 

possible by strict standardization of the subject’s posture and shoulder position. 

 

Recent evidence suggests that there are other causes for rotator cuff tendinopathy besides 

impingement. Next to extrinsic subacromial impingement, there might be an even more 

important role for intrinsic degeneration.2,33 According to this theory, it is not external friction 

onto the tendon causing rotator cuff tendinopathy, but rather pathology initiating from inside 

the tendon. Factors causing this degeneration can be for example overuse34, genetic factors35 or 

reduced vascularization36. Further investigations are necessary to determine the role of both 

extrinsic and intrinsic factors in overhead athletes with rotator cuff pathology.  

First of all, it would be interesting to repeat the same protocol but use other measurement 

instruments so that the AHD of the overhead athletes can be measured at higher degrees of 

abduction. Due to technical reasons this was not possible using ultrasound.  
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Second, the influence of muscle fatigue after training or after a match should not be 

underestimated. It has been shown that after fatigue, scapular position changes to a more 

protracted and anteriorly tilted position and the head of the humerus translates more 

superiorly.37-40 Therefore, the influence of shoulder fatigue induced by overhead throwing on the 

AHD is of interest.  

Third, it is necessary to further elucidate the correlation between sports adaptations at the 

shoulder and the AHD. Our investigation solely focused on the AHD without providing 

information on the presence of adaptations in the athletes. Silva et al. investigated the 

correlation between scapular dyskinesis and the AHD in tennis players and found more narrowing 

in subjects with scapular dyskinesis.15 It is clinically relevant to investigate the direct correlation 

between other adaptations, like GIRD and multidirectional instability, and the AHD in healthy 

overhead athletes. Moreover, genetic factors might also be an important determinant of 

subacromial space configuration. 

 

We can conclude that the results of this study show a larger AHD on the dominant side of female 

overhead athletes in three different abduction positions. Comparing elite with recreational 

athletes shows that the AHD is even larger and less narrowing occurs during the first degrees of 

abduction in the elite athletes.  
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ABSTRACT 

Context Muscle fatigue due to repetitive overhead throwing is considered an important factor 

contributing to impingement-related rotator cuff pathology in overhead athletes. There is 

contradicting evidence on scapular and glenohumeral kinematic changes after fatigue which 

prohibits conclusions on how the acromiohumeral distance (AHD) is affected by shoulder muscle 

fatigue.  

 

Objective The purpose of this study was to investigate the impact of a fatigue protocol 

resembling overhead throwing on the AHD and three-dimensional scapular position in overhead 

athletes.  

 

Design  Case series 

Setting Laboratory, institutional 

 

Participants  Twenty-nine healthy recreational overhead athletes participated in this study (15 

female, 14 male, mean age 22.23± 2.82 years). 

 

Data collection and analysis The athletes were tested before and after a shoulder muscle 

fatiguing protocol. Acromiohumeral distance was measured using ultrasound and scapular 

position was determined with an electromagnetic motion tracking system (Polhemus 3Space 

Fastrak®). Both measurements were performed at three elevation positions (0°, 45° and 60° of 

abduction). Three factor mixed model was used for data analysis. 

 

Results  We found that after fatigue, the acromiohumeral distance was significantly increased 

when the arm was actively positioned at 45° (Δ0.80mm (±0.24), p=0.002) and 60° (Δ0.58mm 

(±0.23), p=0.020) of abduction. Scapular position was changed after fatigue to a significantly 

more posteriorly tilted position at 0, 45 and 60° of abduction (Δ1.98° (±0.41), p<0.001), more 

upwardly rotated position at 45° (Δ6.10° (±1.30), p<0.001) and 60° (Δ7.20° (±1.65), p<0.001) of 

abduction and more externally rotated position at 45° (Δ4.97° (±1.13), p<0.001) and 60°  (Δ4.61° 

(±1.90), p=0.001) of abduction.  

 

Conclusions After a fatiguing protocol that was close to overhead throwing movement, changes 

in AHD and scapular position were found in the shoulders of overhead athletes that correspond 

with a protective, impingement-sparing situation at lower elevation angles.  

 

Keywords  shoulder, subacromial impingement syndrome, prevention, ultrasonography  
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INTRODUCTION 

Overhead sports activities place large-magnitude loads onto the upper extremity through 

repetition of high velocity overhead motion while continuously alternating between acceleration 

and deceleration.1 Not surprisingly, overhead athletes often present with shoulder pathology. 

Disorders of the rotator cuff are frequently the source of pain.2,3 Subacromial impingement plays 

an important role in development of rotator cuff pathology.4 This occurs when there is 

inadequate space for clearance of the rotator cuff tendons during elevation.5 Multiple theories 

exist on why overhead athletes develop impingement related complaints.6-8 Fatigue of the 

shoulder muscles due to repetitive overhead throwing has been postulated to contribute to 

impingement.9 Since the shoulder musculature plays such an important role in producing and 

controlling shoulder motion, impairments of these muscles could alter scapular kinematics and 

influence subacromial space size.  

 

Up to now there is no consensus in literature as to whether scapular upward rotation increases10-

136 or decreases14,15 when the shoulder is fatigued. Neither is there a consensus on what happens 

to external rotation and posterior tilt of the scapula after shoulder fatigue.10-15 Based on these 

findings clinicians can only indirectly deduce the impact of shoulder muscle fatigue in overhead 

athletes on the actual size of the subacromial space. No studies have measured the 

acromiohumeral distance (AHD) before and after shoulder fatigue. Moreover, a lot of studies 

have used fatiguing protocols which are not resembling overhead throwing fatigue like external 

rotation, horizontal abduction or elevation exercises.10,11,14,16 Therefore, the purpose of our study 

was to investigate the impact of a fatigue protocol resembling overhead throwing on the AHD in 

overhead athletes through direct measurement of this space by use of ultrasound. At the same 

time, changes in three-dimensional scapular position were of interest to look at the relationship 

between these rotations and AHD.  

 

MATERIALS AND METHODS 

Subjects 

Twenty-nine healthy overhead athletes participated. They were recruited from recreational 

sports associations (volleyball, tennis, water polo, squash and badminton). To be included in the 

study, participants had to be aged between 18 and 30 and perform overhead sports activity for at 

least 2 hours a week. We excluded participants when they had experienced shoulder pain during 

the last 6 months for which they consulted a medical doctor. Given the possible influence of 

glenohumeral internal rotation deficit (GIRD) on scapular and glenohumeral kinematics, we 

excluded athletes with GIRD (>20° asymmetry with contralateral side7).17,18 The local ethics 

committee approved the study and all participants signed an informed consent. 
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Data Collection 

Athletes filled in a questionnaire to obtain demographic information (gender, age, weight, 

height), information on their sports activity (what sport, hours/week and years of experience) and 

on their history of shoulder pain. Each participant underwent a clinical examination including 

active movements and impingement tests (Hawkins, Neer and Jobe test).19 In case one of the 

tests was painful, the athlete was excluded from the investigation. Internal rotation range of 

motion was measured with an AcumarTM Digital Inclinometer (model ACU360, Lafayette 

Instrument Co.; Lafayette, IN) prior to the start of the investigation. During this measurement 

participants were supine with the shoulder 90° abducted and internally rotated until the coracoid 

process started moving anteriorly.20 One investigator checked movement of the coracoid process 

through palpation and the other investigator measured range of motion.  

 

We performed baseline measurements of the AHD on both shoulders, representing the pre 

fatigue condition. Baseline measurements of three-dimensional scapular kinematics were 

performed only at the dominant side. Next, the dominant side was fatigued while the non-

dominant side was not. The dominant side was defined as the side which was used for overhead 

throwing during sports activities. Upon completing the fatigue protocol all measurements were 

repeated, representing the post fatigue condition. The fatigued shoulder was tested first to limit 

time to measurements and minimize muscle recovery. For the same reason, the fatiguing 

protocol was performed adjacent to the measurement device and participants were instructed on 

quick repositioning into the correct positions. 

 

Sonographic images were obtained by a single investigator, specialized in shoulder 

ultrasonography, using a Colormaster 128 EXT-IZ (Telemed UAB, Vilnius, Lithuania). A 5-10 MHz 

linear transducer (HL9.0/40/128Z) was used. Subjects’ position was standardized and corrected 

before the start of ultrasound scanning. They were seated upright without back support, their 

feet flat on the ground. When scanning the AHD at 0° of shoulder abduction, subjects were asked 

to keep their arms relaxed along their body with the ulnar side of their hand supported on their 

thighs and the thumbs pointing upwards. For measurement of the AHD at 45 and 60° of shoulder 

abduction, subjects had to actively keep their arm in this position with the elbow flexed 90° and 

the hand in neutral position with the thumb pointing upwards. To assure that the exact amount 

of abduction was maintained during measurements, a belt, fixed to the chair and hanging around 

the subjects lower arms, was adjusted to this position and subjects were asked to keep this belt 

just straight, without pulling at it.21 (Figure 1) The amount of abduction was verified with an 

AcumarTM digital inclinometer. The transducer was positioned in the coronal plane, parallel with 

the long axis of the humerus, at the location at which the acromiohumeral distance was least.21  
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Figure 1. Left: Subject position and probe placement during sonographic measurements of 

the subacromial space. Right: Measurement of the subacromial space on ultrasound image. 

 

We collected three-dimensional scapular kinematics at 30Hz with the Polhemus 3Space Fastrak® 

(Colchester, VT). This electromagnetic motion tracking system has been used in several studies 

investigating shoulder girdle motion.11-13,22,23 An accuracy of 0.15° root-mean-square (RMS) for 

orientation and 0.76mm RMS for position have been reported by the manufacturer.24 It consists 

of a transmitter which emits the signal, three receivers, and a digitizing stylus which are  all 

connected to an electronic unit. The receivers were attached to the bony landmarks with 

adhesive tape.(Figure 2)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Receiver locations during three-dimensional scapular position measurements. 

Upper right: Coordinate axes for the local scapular reference frame (AC: acromioclavicular 

joint, SP: root of scapular spine, IA: inferior angle of scapula) 
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The thoracic receiver was placed on the sternum, just inferior to the sternal notch, the humeral 

receiver on the upper arm, just distal from the deltoid attachment onto the humerus, and the 

scapular receiver was placed on the flat surface of the acromion. With the subjects in a seated 

position, bony landmarks on the thorax, humerus and scapula were palpated and digitized with 

the stylus.25 Due to ethical considerations the surface method was preferred over the method 

with sensors fixed to pins embedded in the bone. Limitations of this surface method were 

considered and precautions were taken to limit error. The low BMI of our patients exclude 

potential confounding factors associated with a large amount of soft tissue and abduction 

positions were limited to much less than 120°, which is considered the limit for reliable motion 

tracking.26  

Changes in scapular upward rotation, posterior tilt and external rotation were quantified before 

and following muscle fatigue. Kinematic data were collected during each of the three static 

abduction positions of the shoulder (0°, 45° and 60° of abduction) which corresponded with the 

positions in which ultrasonographic measurements were performed. Each position was held 

isometrically for 5 seconds and this was repeated three times.  

 

Fatiguing Protocol 

To fatigue the dominant shoulder we chose a protocol that was close to the overhead throwing 

movement on the one hand and easy to standardize on the other hand. The athletes had to move 

the arm repeatedly from internal to external rotation with the shoulder abducted 90° while 

holding an XCO-Trainer®.(Figure 3) Resistance of the XCO-Trainer® increased the needed 

acceleration and deceleration forces similar to an overhead throwing motion. Participants were 

knelt with the hip of the non-dominant side flexed to 90° and foot flat on the ground. This 

position was chosen to limit contribution of lower extremity force during the “throwing” motion. 

No deviation of the upper arm from the frontal plane was allowed. Speed was controlled with a 

metronome (144 Hz). Fatigue was defined based on both subjective and objective criteria. A Borg 

Rating of Perceived Exertion (RPE) scale was used to register the athletes subjective experience 

of fatigue.27 This scale is a valid measure of local upper extremity exertion.28 We considered the 

subjects fatigued when they reported an exertion level exceeding 14 out of 20.29 A rating of 15 on 

the Rating of Perceived Exertion scale corresponds with “hard/heavy work or strain and fatigue 

on muscles”.27 We objectively evaluated correct performance of the movement: no slowing 

down, no lowering of the upper arm or deviation from the frontal plane and no diminishing of 

total range of motion were allowed. When quality of movement was considered low the athletes 

were encouraged to correct performance. The impossibility to do so because of muscle fatigue 

was used as the objective criteria to quit. The athletes were not aware of criteria used to 

discontinue the fatigue protocol. 
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Figure 3. Fatigue protocol. 

 

 

Data Analysis 

We saved all images on the US unit for later acromiohumeral distance measurements. Echowave 

II Software was used for measuring distances. We defined cromiohumeral distance as the 

tangential distance from the most lateral part of the acromion to the humeral head. (Figure 1)  

Raw kinematic data of the Fastrak were converted to anatomically defined rotations with a 

custom-made program written in Matlab and displayed with Visual 3D (C-motion, Rockville, MD). 

The three scapular rotations were defined with an Euler axis sequence (external rotation, upward 

rotation, and posterior tilting).25 Means were calculated over the duration of 5 seconds and those 

data were again averaged over the three trials. 

 

Statistical Analysis 

SPSS 19 (SPSS Inc., Chicago, IL) was used for statistical analysis. All p-values were two-tailed and 

considered significant when <0.05. To determine the influence of fatiguing the dominant 

shoulder on the AHD in both shoulders a three factor mixed model analysis was used with factors 

“side” (dominant and non-dominant), “time” (before and after fatigue) and “position” (0°, 45° 

and 60°). To investigate the influence of dominant shoulder fatigue on scapular kinematics, a two 

factor mixed model analysis was used with factors “time” and “position”. Post-hoc analyses were 

adjusted with Bonferroni correction.  

 

RESULTS 

Gender was evenly distributed (female: male= 15:14). Mean age was 22.23years (±2.82), mean 

weight 71.6kg (±9.5) and height 178.3cm (±7.8). The mean number of hours of overhead sports 

activity was 6.5 (3.2) and mean number of years of experience was 9.17 (±3.60). 
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Results of sonographic acromiohumeral distance measurements on the dominant and non-

dominant side and before and after fatiguing the dominant side are presented in table 1 and 

figure 4. 

Table 1. Mean (standard error) sonographic acromiohumeral distance measurements on the 

dominant and non-dominant side and before and after fatiguing the dominant side (mm). 

*represents statistical significant difference between pre and post fatigue measurements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Graphical presentation of sonographic subacromial space measurements on the 

dominant and non-dominant side and before and after fatiguing the dominant side. X-axis 

displays the position of abduction at which measurement was performed. Y-axis displays 

acromiohumeral distance in mm. * indicates statistically significant difference between pre and 

post fatigue measurements. 

 Dominant Side Non-dominant Side 

Abduction 

Position 

Pre 

Fatigue 

Post 

Fatigue 

Post – 

Pre 

p-value 

Pre 

Fatigue 

Post 

Fatigue 

Post – 

Pre 

p-value 

0° 11.92 

(0.25) 

12.15 

(0.25) 

0.148 11.90 

(0.30) 

11.93 

(0.30) 

0.854 

45° 10.81 

(0.34) 

11.61 

(0.34) 

0.002* 10.24 

(0.39) 

10.03 

(0.39) 

0.430 

60° 10.21 

(0.39) 

10.79 

(0.39) 

0.020* 9.95 

(0.36) 

10.13 

(0.37) 

0.527 
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Analysis of acromiohumeral distance showed a significant interaction effect of “time x side x 

position” (p=0.048). Post hoc tests showed that the acromiohumeral distance did not change 

significantly after fatigue at the position of 0° abduction (Δ= 0.24mm (±0.16), 95% CI [-0.09 – 

0,57mm], p= 0.148). On the dominant side the acromiohumeral distance was significantly larger 

after fatigue at 45° of abduction with a mean increase of 0.80mm (±0.24) (95% CI [0.31 – 

1.28mm], p= 0.002) and at 60° of abduction with a mean increase of 0.58mm (±0.23) (95% CI 

[0.10 – 1.06mm], p= 0.020). Post hoc tests showed no significant change of the acromiohumeral 

distance at all abduction positions on the non-dominant side, which was not fatigued.  

 

Mean change of the position of the dominant scapula around the three axes before and after 

fatigue is presented in figure 5. 

 

Figure 5. Graphical representation of the amount of change of scapular position (°) in the 

three axis after fatigue. Y-axis represents mean change of scapular position after fatigue 

compared to the prefatigue status. Positive angles represent a more posteriorly tilted, upwardly 

rotated or externally rotated position of the scapula after fatigue. * indicates a significant change 

of scapular position.

 

 

As to the position of the scapula around the z-axis (anterior-posterior tilt) a significant main 

effect of “time” was found with an overall change of 1.98° (±0.41) after fatigue (95% CI [1.16 – 

2.79°], p<0.001) meaning that after fatigue the scapula was in a more posteriorly tilted position. 

There was a significant interaction effect of “time x position” for scapular position around the x-

axis (upward-downward rotation). Post hoc tests showed that the scapula was in the same 

position before and after fatigue at 0° of abduction (Δ= 1.35° (±1.07), 95% CI [-0.91 - 3.62°], 

p=0.223) while in a significantly more upwardly rotated position at 45° (Δ= 6.10° (±1.30), 95% CI 
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[3.36 – 8.85°], p<0.001) and at 60° of abduction (Δ= 7.20° (±1.65), 95% CI [3.72 – 10.69°], p<0.001). 

Comparing the position of the scapula around the y-axis (external-internal rotation) before and 

after fatigue revealed a significant interaction effect of “time x position” (p<0.001). Again there 

was no significant change of the dominant scapula position at 0° of abduction (Δ= 1.58° (±0.81), 

95% CI [-3.30 – 0.13°], p=0.068) but at 45° (Δ= 4.97° (±1.13), 95% CI [2.58 – 7.36°], p<0.001) and at 

60° of abduction (Δ= 4.61° (±1.90), 95% CI [2.10 – 7.12°], p=0.001) the scapula was in a 

significantly more externally rotated position after fatigue. 

 

DISCUSSION 

Based on literature it is not clear how muscle fatigue as a result of overhead throwing affects the 

AHD. With this study we wanted to measure the acromiohumeral distance directly by use of 

ultrasound before and after a fatiguing protocol with an exercise that resembles overhead 

throwing. At the same time, we wanted to determine scapular position changes. Like this a 

change in AHD could be linked to changes of scapular position.  

Contrary to what is intuitively believed in clinical practice, we found that after fatigue the 

acromiohumeral distance significantly increases in the shoulder of healthy overhead athletes 

when the arm is held actively in a 45 and 60° elevated position. No change is seen in a relaxed 

position with the arm at 0° of abduction. This coincides with the alterations of three-dimensional 

scapular position seen after fatigue. The scapula was found to be in a significantly more 

posteriorly tilted, upwardly and externally rotated position when the arm was 45° and 60° 

elevated. These positions are believed to result in an increase of the AHD which suggests that the 

increase in acromiohumeral distance results from the scapular position changes found.30,31  

 

This is the first study that directly measured the acromiohumeral distance before and after 

overhead throwing fatigue. Other studies have investigated the influence of muscle fatigue on 

three-dimensional scapular position. To put these results in the correct perspective, a distinction 

must be made based on fatigue protocol type.  

Four studies were found that investigated changes of scapular kinematics after a fatiguing 

repetitive elevation task, also called a global fatigue task.10,12-147 Ebaugh et al found increased 

upward rotation and external rotation next to decreased posterior tilt.12 Mc Quade et al’s first 

study147 showed less scapular motion while their last study136 showed more scapular motion after 

elevation fatigue. Results of their first study however are limited by the very small sample size 

(n=4). Lastly, Chopp et al also found an increased scapular upward and external rotation and 

posterior tilt.100 These results are in general similar to the impingement-sparing changes found in 

our study after overhead throwing fatigue. It has been suggested that after global shoulder 
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muscle fatigue more compensatory scapular motion is needed to reach the requested angle of 

elevation and changes of scapular kinematics must be seen as a compensatory strategy.12  

 

Next to elevation fatigue, other studies investigated the influence of external rotation fatigue, 

also called local shoulder fatigue. Two studies found less posterior tilt and external rotation of the 

scapula after fatigue.11,15 Upward rotation of the scapula however was shown to increase after 

external rotation fatigue in the study of Ebaugh et al11 while decrease in the study of Tsai et al.15 A 

third study by Chopp et al showed no significant change of scapular motion after the local fatigue 

task.10 The contradictory results of these studies must be seen in light of methodological 

differences like for example the use of static positions or dynamic elevation for measuring 

scapular position and criteria used to determine fatigue. Joshi et al was the only fatigue study 

found on overhead athletes and is best comparable to our study.9 They performed a prone 

external rotation fatiguing protocol at 90° of abduction and found more upward rotation 

afterwards during a diagonal upward movement from horizontal adduction/internal rotation to 

horizontal abduction/ external rotation. No change was found of posterior tilt and external 

rotation of the scapula.  

Though these results are in line with ours, there is an important difference between the fatigue 

protocol they used and ours. By using prone external rotation at 90° of abduction only the 

posterior shoulder muscles were fatigued in the study of Joshi  et al.9 Our fatigue protocol was 

aimed at fatiguing both muscle groups by high velocity concentric as well as eccentric 

contractions, similar to the way in which shoulder muscles work during overhead sports activity. 

No other studies were found that examined three-dimensional scapular position changes after 

functional fatiguing protocols resembling overhead sports fatigue.  

 

It is presumable that our fatiguing protocol elicited a higher fatigue level of the glenohumeral 

compared to scapulothoracic muscles. This could explain why our athletes compensated with 

more scapular motion into an impingement sparing direction. This coincides with the increased 

AHD found during actively held abduction and suggests that possibly humeral head position on 

the dominant shoulder of our athletes either didn’t change or did not change enough in superior 

direction to decrease the AHD. Possibly the rotator cuff muscles are not fatigued to a greater 

extent than the deltoid after the overhead throwing fatigue protocol we used.  

 

The amount of change in scapular position after fatigue, found in our study is small for posterior 

tilt (overall 1.98° (0.41)), large for external rotation (4.97° (1.13) at 45° of abduction and 4.61° 

(1.90) at 60° of abduction) and very large for upward rotation (6.10° (1.30) at 45° of abduction and 

7.20° (1.65) at 60° of abduction) compared with the above mentioned studies. A difference of 
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more than 3° is generally considered the minimum change to be clinically important.10-12 The 

clinical importance of the amount of increase of the acromiohumeral distance (0.78mm (0.24) at 

45° and 0.58mm (0.23) at 60° of abduction) after fatigue can be questioned. However, it must be 

acknowledged that even a small change of the AHD could result in an decreased pressure in the 

subacromial space. Furthermore, the small standard errors and the absence of almost any change 

at the non-dominant side (Δ 0.01mm (±0.17)), which was not fatigued, raises credibility of the 

importance.  

 

Some limitations of this study need to be considered. First of all, AHD measurements were 

performed at low elevation angles so no information is available on what happens above 60°. The 

reason for this was the impossibility to display the rotator cuff in the AHD at higher angles using 

ultrasound.21 Ultrasound was preferable because of its low cost, safety and ability to investigate 

the athletes in a seated position, which allows free movement of the scapula. Graichen et al 

showed that the minimal acromiohumeral distance passes right through the supraspinatus 

tendon at 30° and 60° of abduction in contrast to the minimal distance at 90° of abduction that is 

located laterally to the suspraspinatus.32  This supports the relevance of lower elevations angles in 

view of rotator cuff tendinopathy.  

Second, though resembling an overhead throwing motion, the fatiguing protocol used still differs 

from overhead throwing on the field. Important differences are the kneeled position we used to 

limit contribution of the lower limbs and the lack of a horizontal abduction – adduction motion. 

Since adding these factors would make it “easier” for the shoulder muscles it seems unlikely that 

this would dramatically alter results. Moreover our subjects spontaneously mentioned after the 

fatiguing protocol that the experience of muscle fatigue resembled the feeling after a heavy 

training or game.  

Third, it is important to mention that our findings represent changes that occurred immediately 

after the shoulder muscles were fatigued. Whether or not these patterns change with repeated 

bouts of muscle fatigue, or how long these changes persist are not known at this time and are 

areas for future research.  

 

The results of this study necessitate further research on the role of impingement in development 

of rotator cuff pathology in overhead athletes, since the results suggest that it is possible that 

overhead throwing fatigue does not narrow the AHD but instead enlarges it. Future studies 

should use other measurement tools to build upon our results with data at higher elevation 

angles and other arm positions. Moreover, the correlation between sports adaptations at the 

shoulder and the AHD needs to be elucidated. Silva et al investigated the correlation between 

scapular dyskinesis and the AHD in tennis players and found more narrowing in subjects with 
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scapular dyskinesis.33 Rotator cuff or scapular muscle imbalance34,35 could also be a contributing 

factor to impingement, as is GIRD.17,18,36  

 

CONCLUSIONS 

Muscle fatigue due to repetitive overhead throwing is considered an important factor 

contributing to impingement-related rotator cuff pathology in overhead athletes. The present 

study investigated the impact of a fatigue protocol resembling overhead throwing on the 

ultrasonographic acromiohumeral distance and three-dimensional scapular position in overhead 

athletes. It was shown that after a fatiguing protocol, acromiohumeral distance was significantly 

increased and the scapula was in a significantly more upwardly and externally rotated and 

posteriorly tilted position when the arm was actively held at 45° and 60° of abduction. This 

corresponds with a protective, impingement-sparing situation and could be explained by the fact 

that the scapula compensates for glenohumeral shoulder muscle fatigue.   
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ABSTRACT 

Background Loss of internal rotation range of motion (ROM) at the dominant side is well 

documented in overhead athletes. This altered motion pattern has been shown to change 

glenohumeral and scapular kinematics. This could compromise the subacromial space and 

explain the association between glenohumeral internal rotation deficit (GIRD) and subacromial 

impingement. 

 

Purpose First, to quantify acromiohumeral distance (AHD) and compare between the dominant 

and non-dominant side in overhead athletes with GIRD of more than 15°. Second, to investigate 

the effect of a sleeper stretch program on ROM and AHD. 

 

Study design Controlled laboratory study 

 

Methods ROM was measured with a digital inclinometer and AHD was measured with ultrasound 

in 62 overhead athletes with GIRD (>15°) at baseline. Differences between sides were analyzed. 

Athletes were randomly allocated to the stretch- (n=30) or control group (n=32). The stretch 

group performed a 6 week sleeper stretch program at the dominant side. Change of range of 

motion and AHD were measured and analyzed in both groups after 6 weeks. 

 

Results The dominant side showed a significant internal rotation deficit (-24.7°±6.3) and 

horizontal adduction deficit (-11.8°±7.4) and the dominant side AHD was significantly smaller 

with the arm at neutral (-0.4mm±0.6) and at 45° (-0.5mm±0.8) and 60° (-0.6mm±0.7) active 

abduction.  

After stretching significant increase of internal rotation (+13.5°±0.8), horizontal adduction 

(+10.6°±0.9) ROM and AHD (+0.5 to +0.6mm) was observed at the dominant side of the stretch 

group. No significant change of AHD was seen at the non-dominant side of the stretch group and 

at both sides of the control group.  

 

Conclusion The AHD, a two-dimensional measure for subacromial space, was found to be smaller 

at the dominant side in athletes with GIRD and was found to increase after a 6 week sleeper 

stretch program. These findings might provide insight into the relation between GIRD and 

subacromial impingement but future studies are needed to determine clinical implications. 

 

Key terms overhead athletes, subacromial space, shoulder impingement syndrome, decreased 

internal rotation 
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INTRODUCTION  

Asymmetric glenohumeral rotational range of motion (ROM) has been well documented in the 

shoulders of overhead sports players.5;9;12;14;30;38 Studies have shown a decrease of internal 

rotation and a concomitant increase of external rotation at 90° of abduction in the throwing 

shoulder.5;9;12;14;30;38 Burkhart et al. termed the loss of degrees of glenohumeral internal rotation of 

the throwing shoulder compared with the non-throwing shoulder as GIRD (glenohumeral internal 

rotation deficit).7 Non-pathological GIRD in healthy athletes of several types of sports disciplines 

was found to be on average 10°±2 compared with the non-throwing shoulder.6 The pathological 

threshold for GIRD is believed to be 20°.7;25 Recently, increased risk of shoulder injury in athletes 

with GIRD of more than 20° was indeed shown by Wilk et al.42  

 

Both bony and soft tissue adaptations have been associated with GIRD. Increased humeral 

retroversion was shown in habitual throwers.9;27;30 This bony adaptation is defined as an increase 

of the angle between the axis of the elbow joint and the axis through the center of the humeral 

head.30 Increased retroversion enables the arm to externally rotate to a greater extent and 

internally rotate to a lesser extent before being constraint by capsuloligamentous restraints.9;27  

Besides humeral retroversion, posterior shoulder tightness, encompassing tightness of the 

posterior shoulder capsule and muscles, has been proposed as a major contributor to a loss of 

internal rotation.7;39;40 Posterior shoulder tightness is quantified through measurement of cross-

chest adduction ROM and was shown to correlate with internal rotation ROM in overhead 

athletes.17;25;40 It is hypothesized that posterior shoulder tightness is the result of microtrauma 

and reactive scarring of the soft tissues from high loads onto the posterior shoulder during the 

deceleration phase of a throwing motion.6 Reinold et al. have reported decreased internal 

rotation ROM immediately after throwing and lasting up to 24 hours after throwing.31 Moreover, 

Tehranzadeh et al. and Thomas et al. have shown posterior capsule thickening in athletes with 

GIRD using MRI and ultrasound respectively.35;36 These findings support the role of posterior 

shoulder soft tissue tightness in decreasing internal rotation but the cause-effect relationship 

remains speculative. 

 

A loss of glenohumeral internal rotation and tightness in the posterior shoulder have been 

associated with altered kinematics of the glenohumeral as well as the scapulothoracic joint. 

Anterior and superior migration of the humeral head have been reported after surgical tightening 

of the posterior shoulder in cadavers.13 On the other hand increased protraction and anterior tilt 

and decreased upward rotation of the scapula were shown in healthy athletes displaying 

posterior shoulder tightness.4;15;37 These changes of glenohumeral and scapulothoracic 

kinematics could compromise the subacromial space and contribute to subacromial 
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impingement.1;34 Current literature provides evidence for an association between GIRD and 

impingement by showing decreased internal rotation and horizontal adduction ROM in subjects 

with subacromial impingement.39;41 However, no studies have directly investigated the size of the 

subacromial space in athletes with glenohumeral internal rotation loss at the throwing shoulder. 

 

Stretching the posterior shoulder to restore internal rotation ROM is suggested in management 

of subacromial impingement in overhead athletes.11 Moreover, stretching has been 

recommended to prevent shoulder injuries and enhance sports performance.14;20 Good results 

were shown with the sleeper stretch and the cross-body stretch to decrease the internal rotation 

loss.21 It is not clear if stretching also affects glenohumeral and scapular kinematics and therefore 

if this would alter the size of the subacromial space.  

 

The objective of this study was twofold. First, we wanted to investigate if the size of the 

subacromial space differed between the dominant side and non-dominant side of overhead 

athletes with dominant side internal rotation loss. Second, we were interested if a 6 week 

dominant side sleeper stretch program would change internal rotation and horizontal adduction 

ROM and alter the size of the subacromial space.  

 

MATERIALS AND METHODS  

Subjects 

Healthy overhead athletes with dominant side loss of internal rotation were recruited from 

recreational sports associations (volleyball, tennis, water polo, squash and badminton). To be 

eligible for the study, participants had to be aged between 18 and 30 and perform overhead 

sports activity for at least 2 hours a week. The athletes were included when they had 15° or more 

GIRD.37 GIRD was defined as a deficit of internal rotation ROM at the dominant compared with 

the non-dominant side, regardless of total range of motion. The minimal difference of 15° can be 

considered a significant amount of GIRD as is it larger than the non-pathological GIRD (10°).6 On 

the other hand this criterion permitted to recruit healthy athletes as it is smaller than the GIRD 

considered pathological (20°) which is often associated with shoulder pathology.7;25 Participants 

were excluded when they had experienced shoulder pain during the last 6 months for which they 

consulted a medical doctor and when they had a history of shoulder surgery or documented 

structural injuries to the shoulder complex. Hundred-fifteen athletes were screened for eligibility, 

of which 67 athletes met the criteria. Sixty-two of these agreed to participate in the study. The 

local ethics committee approved the study and all participants signed an informed consent. 
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Design overview 

The athletes were randomly allocated to the stretch group (n=30) and the control group (n=32). 

Block randomization of 4 was used to determine allocation sequence. All measurements were 

bilaterally performed at baseline and after 6 weeks. The athletes of the stretch group performed 

the sleeper stretch for 6 weeks at the dominant side. The non-dominant side of the stretch group 

and both sides of the control group were not stretched. All athletes were tested during 

September and October 2011 to eliminate a different influence from the athletic season on the 

change of outcome measurements. 

 

Data Collection 

Athletes filled in a questionnaire to obtain demographic information (gender, age, weight, height) 

and information on their sports activity (what sport, hours/week and years of experience). Each 

participant underwent a clinical examination including active movements and impingement tests 

(Hawkins, Neer and Jobe test).8 In case one of the tests was painful, the athlete was excluded 

from the investigation.  

 

Internal rotation, external rotation and horizontal adduction ROM was measured with an AcumarTM 

Digital Inclinometer (model ACU360, Lafayette Instrument Co.; Lafayette, IN). All measurements 

were taken before any exercise, warm-up or throwing activities. Participants were supine. 

Internal rotation was measured with the shoulder 90° abducted and passively internally rotated 

until the coracoid process started moving anteriorly.2 (Figure 1A) One investigator checked 

movement of the coracoid process through palpation while a second investigator measured 

ROM.2 The AcumarTM was mounted on a bar which was aligned from the olecranon to the ulnar 

styloid process.26 External rotation was measured with the shoulder 90° abducted and passively 

externally rotated until end ROM.(Figure 1B) The scapula was fixated by the table and the body 

weight of the subject. The inclinometer was aligned the same way as for internal rotation 

measurement. Horizontal adduction was measured with the shoulder at 90° flexion and 

horizontally adducted until the scapula started moving laterally.(Figure 1C) One investigator 

manually fixated the lateral border of the scapula and palpated lateral movement of the scapula 

while the second investigator moved the upper arm towards horizontal adduction and measured 

the angle between the upper arm and the vertical.16;19 The inclinometer was aligned with the 

ventral midline of the humerus. Good reliability of all measurements was repeatedly shown in 

previous studies.2;16;19;31 All ROM measurements occurred under supervision of an experienced 

investigator. 
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Figure 1. Range of motion measurements (A. Internal rotation, B. External rotation, C. 

Horizontal adduction) 

   

 

Sonographic images of the subacromial space were obtained by a single investigator who had 4 

years experience with performing research related quantitative shoulder ultrasound. The 

Colormaster 128 EXT-IZ (Telemed UAB, Vilnius, Lithuania) with a 5-10 MHz linear transducer 

(HL9.0/40/128Z) was used. Subjects’ position was standardized and corrected before the start of 

ultrasound scanning. They were seated upright without back support, their feet flat on the 

ground. Two images were obtained at each of the three positions: 0°, 45° and 60° of abduction. 

When scanning the subacromial space at 0° of shoulder abduction, subjects were asked to keep 

their arms relaxed along their body with the ulnar side of their hand supported on their thighs and 

thumbs pointing upwards. For imaging the subacromial space at 45 and 60° of shoulder 

abduction, subjects had to actively keep their arm in this position with the elbow flexed 90° and 

the hand in neutral position with the thumb pointing upwards. To assure that the exact amount 

of abduction was maintained during measurements, a belt, fixed to the chair and hanging around 

the subjects lower arms, was adjusted to this position and subjects were asked to keep this belt 

just straight, without pulling at it.10 (Figure 2) The amount of abduction was verified with an 

AcumarTM digital inclinometer. The transducer was positioned in the coronal plane, parallel with 

the long axis of the humerus, at the location at which the acromiohumeral distance (AHD) was 

least.10;33 Echowave II Software was used for measuring distances. AHD was defined as the 

tangential distance from the most lateral part of the acromion to the humeral head.(Figure 2) 

Mean AHD was calculated for each position from the results of the two measurements. 

Measurement of the AHD using ultrasound imaging was previously shown to be reliable10 and 

valid for quantifying the subacromial space3. 
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Figure 2. Left: Subject position and probe placement during ultrasound imaging of the 

subacromial space. Right: Measurement of the acromiohumeral distance on ultrasound 

image. 

 

 

 

 

 

 

 

Intervention 

The stretch group performed the sleeper stretch at the dominant side daily for 6 weeks (3 

repetitions of 30”16;28). (Figure 3) A lot of attention was given to correct performance and avoiding 

compensation. The sleeper stretch was demonstrated and then reproduced by the subjects. The 

athletes were instructed to perform the stretch in a side lying position on a firm surface with the 

dominant side below, thorax perpendicular to the ground, head relaxed and supported by a 

cushion and hips flexed. The dominant upper arm and elbow were both flexed 90°. The non-

dominant hand grasped the dorsal side of the dominant wrist and gently pushed into a more 

internally rotated position until a feeling of stretch but not pain was reached. No pain was 

allowed at the anterior shoulder region. Attention was drawn to possible compensations which 

were not allowed:  

• decreasing flexion of the dominant upper arm during the stretch  

• elevating the scapula of the dominant shoulder 

• rolling the non-dominant shoulder posteriorly so that the thorax is no longer 

perpendicular to the ground 

The athletes of the stretch group received a form to take home with an image of sleeper stretch 

performance, a written summary of the instructions and an overview of compensations to avoid.  

 

Figure 3. Performance of the sleeper stretch 
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The athletes of the control group did not perform the sleeper stretch program and were asked to 

maintain all other activities at the same level. 

 

Statistical analysis 

SPSS 19 (SPSS Inc., Chicago, IL) was used for statistical analysis. All p-values were two-tailed and 

considered significant when <0.05. Normality of variables was checked with Shapiro-Wilk tests.  

Test-retest-reliability was assessed for all outcome measurements using the data of the control 

group. Intraclass-correlation-coefficients (ICC2,k) and standard errors of measurement (SEM) 

were calculated. 

To investigate the difference in outcome measures between the dominant and non-dominant 

side, paired samples t-tests were used. To check for differences between the stretch group and 

the control group at baseline, independent sample t-tests were used. To examine the effect of a 6 

week sleeper stretch program, linear mixed model analysis was used with “side” (dominant, non-

dominant) and “time” (at baseline and after 6 weeks) as within-subject factors and “group” 

(stretch group, control group) as between-subject factor. Post-hoc tests were performed with 

Bonferroni correction. 

 

RESULTS 

Demographic data and information on sports activity of the athletes is presented in table 1. 

 

Table 1. Demographics and sports activity information 

Variable 
Stretch-group (n= 30) 

(Mean±SD) 

Control-group (n=32) 

(Mean±SD) 

p-

value 

Age (Years) 21.4 ±2.5 22.1 ±2.2 0.228 

Gender (M:F) 10:20 12:20  

Height (cm) 176.7 ±9.2 175.0 ±8.4 0.454 

Weight (kg) 70.0 ±11.2 68.0 ±10.1 0.465 

BMI (cm
2
/kg) 22.3 ±2.4 22.0 ±2.1 0.550 

Sports discipline 

• Volleyball 

• Tennis 

• Handball 

• Badminton 

 

24 

2 

1 

3 

 

22 

4 

2 

4 

 

Total hours sports/week 6.8 ±3.2 5.9 ±2.0 0.170 

Sports experience (years) 11.2 ±3.9 11.9 ±3.2 0.425 

p-values result from independent sample t-tests to compare groups at baseline. 
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There were no significant differences found between groups at baseline for age, gender, height, 

weight, BMI, total hours of sports/week and the number of years of sports experience. For 

internal rotation ROM the ICC was 0.93 and the SEM 1.6°, for external rotation the ICC was 0.80 

and the SEM 4° and for horizontal adduction ROM the ICC was 0.91 and the SEM 2.7°. For AHD 

measures at 0° of abduction the ICC was 0.99 and SEM 0.1mm, at 45° of abduction the ICC was 

0.98 and the SEM 0.1mm and at 60° of abduction the ICC was 0.92 and the SEM 0.2mm.  

 

Dominant compared to non-dominant side 

Comparison of the outcome measures of the entire study group (containing those in the stretch 

group and those in the control group) between the dominant and the non-dominant side is 

presented in figure 4. The dominant side of the athletes showed significantly less internal 

rotation (MeanΔ=24.7°±6.3) and horizontal adduction (MeanΔ=11.8°±7.4) ROM, significantly 

more external rotation ROM (MeanΔ=9.9°±8.0, p≤0.001) and a significantly smaller AHD at 0° 

(MeanΔ=0.4mm±0.6), 45° (MeanΔ=0.5mm±0.8) and 60° (MeanΔ=0.6mm±0.7) (all p≤0.001). 

 

Figure 4. Range of motion (A) and acromiohumeral distance (B) at the dominant and non-

dominant side of the 62 athletes with glenohumeral internal rotation loss (Baseline 

measurements). 
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D, dominant side; ND, non-dominant side; AHD, acromiohumeral distance 

*indicates statistically significant difference between dominant and non-dominant side 

 

Stretch group compared to control group at baseline and after a 6 week stretching program 

Mean outcome measures at baseline and after the 6 week stretch program for both shoulders of 

the stretch and the control group are presented in table 2. 
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Table 2. Outcome variables (Mean±SD) at baseline (Pre) and after 6 weeks stretching (Post) for the dominant (D) and non-dominant (ND) side of the stretch-

group and the control-group. 

  Stretch-group Control-group 

Variable Side Pre  Post  Δ Post – Pre p-value Pre  Post  Δ Post - Pre p-value 

Internal rotation  

(°) 

D 33.7 ±8.3 47.5 ±7.0 13.5±0.8  [11.8 – 15.2] ≤0.001* 37.7 ±9.0 39.3 ±8.0 1.7±0.8  [0.0 – 3.4] 0.056 

ND 59.0 ±8.0 58.7 ±8.1 -0.5±0.8 [-2.1 – 1.2] 0.574 61.9 ±9.2 59.5 ±8.8 -2.4±0.7  [-3.7 – -1.0] 0.001* 

External rotation  

(°) 

D 113.7 ±10.5 115.7 ±11.1 1.8±0.7  [0.4 – 3.3] 0.013† 109.5 ±8.5 109.8 ±10.7 1.8±0.7  [0.4 – 3.3] 0.013† 

ND 103.1 ±10.1 106.5 ±11.2  1.8±0.7  [0.4 – 3.3] 0.013† 100.3 ±8.0 102.1 ±8.5 1.8±0.7  [0.4 – 3.3] 0.013† 

Horizontal add.  

(°) 

D 31.1 ±8.3 42.3 ±8.0 10.6±0.9 [8.8 – 12.5] ≤0.001* 31.5 ±8.3 32.2 ±7.3 0.6±0.9 [-1.1 – 2.4] 0.456 

ND 44.0 ±10.8 48.8 ±8.9 4.0±1.2 [1.6 – 6.4] 0.002* 42.3 ±11.7 42.0 ±9.6 -0.3±0.9 [-2.1 – 1.4] 0.727 

AHD 0° (mm) D 9.4 ±1.3 9.9 ±1.2 0.5±0.06 [0.3 – 0.6] ≤0.001* 9.7 ±1.3 9.6 ±1.2 0.0±0.03 [-0.1 – 0.0] 0.217 

ND 9.8 ±1.6 9.8 ±1.4 0.0±0.04 [-0.1 – 0.1] 0.839 10.1 ±1.4 10.1 ±1.3 0.1±0.04 [-0.1 – 0.0] 0.240 

AHD 45° (mm) D 6.1 ±1.0 6.6 ±0.9 0.5±0.06 [0.4 – 0.7] ≤0.001* 6.3 ±1.3 6.3 ±1.2 0.0±0.05 [-0.1 – 0.1] 0.976 

ND 6.7 ±1.0 6.6 ±0.9 0.0±0.03 [-0.1 – 0.1] 0.717 6.7 ±1.2 6.7 ±1.1 0.0±0.05 [-0.1 – 0.1] 0.576 

AHD 60° (mm) D 4.9 ±0.9 5.5 ±0.8 0.6±0.08 [0.5 – 0.8] ≤0.001* 5.0 ±1.0 5.0 ±1.0 0.0±0.03 [0.0 – 0.1] 0.233 

ND 5.5 ±1.1 5.5 ±0.9 0.0±0.06 [-0.1 – 0.1] 0.792 5.5 ±1.1 5.6 ±1.0 0.0±0.04 [0.0 – 1.1] 0.792 

Δ Post-Pre represents Mean difference±Standard Error and the 95% confidence interval.  

*indicates statistically significant difference Post-Pre (post hoc tests for interaction “side x time x group”) 

†indicates statistically significant difference Post-Pre (main effect “time”) 

AHD, acromiohumeral distance; D, dominant; ND, non-dominant 
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No significant differences were present between groups for the outcome measures (internal and 

external rotation and horizontal adduction range of motion and AHD at 0°, 45° and 60° 

abduction) at baseline.  

There was a significant interaction effect of “side x time x group” for internal rotation ROM 

(F=21.08, p≤0.001), horizontal adduction ROM (F=5.55, p=0.02), AHD at 0° (F=8.04, p=0.005), at 

45° (F=5.93, p=0.016) and at 60° (F=9.57, p=0.002).  

In the stretch group, internal rotation was significantly increased at the dominant side after 6 

weeks of stretching (MeanΔ=13.5°±0.8) (table 2). At the non-dominant side of the stretch group 

there was no significant change of internal rotation after 6 weeks. Horizontal adduction was 

significantly increased after 6 weeks at both the dominant (MeanΔ=10.6°±0.9) and non-dominant 

side (Mean Δ=4.0°±1.2) of the stretch group. AHD was significantly increased at the dominant 

side of the stretch group at 0° (MeanΔ=0.5mm±0.06), at 45° (MeanΔ=0.5mm±0.06) and at 60° 

(MeanΔ=0.6mm±0.08). No change of the AHD was found at the non-dominant side of the stretch 

group after 6 weeks.  

In the control group, internal rotation was significantly decreased after 6 weeks at the non-

dominant side (MeanΔ=-2.4°±0.7) and unchanged at the dominant side. No change of horizontal 

adduction nor of the AHD was found after 6 weeks in both sides of the control group.  

There was no significant interaction effect of “side x time x group” for external rotation ROM 

(F=0.00, p=0.990) but a main effect of “time” (F=6.29, p=0.013). After 6 weeks, external rotation 

was significantly increased in both shoulders of both groups (MeanΔ=1.9°±0.7).(Table 2) This 

change of external rotation over time was not different between groups nor between sides.  

 

DISCUSSION 

Several studies have consistently demonstrated a loss of glenohumeral internal rotation at the 

dominant side of overhead throwing athletes.5;9;12;14;30;38 This decreased mobility is empirically 

linked to posterior shoulder tightness17;25;40 and to altered glenohumeral and scapulothoracic 

kinematics.4;13;15;18;37 Reports on kinematic alterations give us reasons to believe that GIRD could 

compromise the subacromial space.1;34 This study therefore investigated the AHD at both 

shoulders in 62 overhead athletes with a GIRD of more than 15°. The dominant side of all athletes 

included in the study showed a deficit of internal rotation (-24.7°±6.3) and horizontal adduction (-

11.8°±7.4) and a gain of external rotation (+9.9°±8.0) compared with the non-dominant side at 

baseline. The mean deficit of internal rotation exceeded the pathological threshold of 20° set by 

Burkhart et al.7 The AHD at baseline was shown to be significantly smaller at the dominant side at 

rest (0.4mm ±0.6) and at 45° (0.5mm ±0.8) and 60° (0.6mm ±0.7) active abduction in the 

overhead athletes with GIRD.  
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This is the first study to measure AHD in athletes with a loss of glenohumeral internal rotation. 

Previous studies have quantified the influence of posterior shoulder tightness on subacromial 

pressure. Muraki et al. showed that tightening the posterior shoulder capsule of cadaveric 

shoulders increases subacromial contact pressure during shoulder flexion and during the follow-

through phase of a throwing motion.23;24 In contrast, Poitras et al. failed to show a change in 

subacromial pressure during scapular plane abduction after posterior capsule tightening.29 The 

influence of posterior shoulder tightness is likely to depend upon the plane of shoulder motion. 

Muraki et al. indicated that even a small amount of narrowing of the subacromial space may 

cause significant changes in contact pressure due to the nonlinear material properties of the soft 

tissue.24  Our ultrasonographically measured AHD values are in line with previously reported 

measures.10;32;33 No studies could be found on the influence of hand dominance on the AHD. 

Though differences between sides are small, they could be important as they were larger than 

the SEM (0.1-0.2mm).  

 

As outlined in the introduction, stretching the posterior capsule to restore internal rotation ROM 

at the dominant side is recommended. After quantifying the AHD at the shoulders of athletes 

with GIRD at baseline we were interested if a stretching program could restore internal rotation 

and horizontal adduction ROM and concomitantly alter AHD. We found internal rotation 

(+13.5°±0.8) and horizontal adduction (+10.6°±0.9) ROM to be increased at the dominant side of 

the stretch group after 6 weeks. Surprisingly, the non-dominant side of the stretch group also 

showed a significant, yet smaller increase of horizontal adduction ROM (+4.0°±1.2) after 6 weeks. 

A plausible but speculative explanation for this could be an increased awareness of the 

importance of stretching because of being included in the stretch group. This could have 

encouraged them to perform all shoulder stretches at training more accurate during these 6 

weeks. After 6 weeks, the dominant side of the stretch group also showed a significantly 

increased AHD at rest (+0.5mm ±0.06) and at 45° (+0.5mm ±0.06) and 60° (+0.6mm ±0.08) active 

abduction. No significant changes of AHD were found after 6 weeks at the non-dominant side of 

the stretch group and in the control group. The non-dominant side of the control group instead 

showed a significantly decreased internal rotation ROM (-2.4°±0.7) after 6 weeks. No explanation 

could be found for this. Moreover, it was shown that external rotation ROM increased after 6 

weeks at both sides of both groups (+1.9°±0.7). As this difference was smaller than the SEM 

associated with our external rotation measurement (SEM 4°) this change cannot be accepted as 

clinically significant and is likely due to measurement error. 

 

The results of this study show, in agreement with other studies, that GIRD is reversible and is at 

least partially attributed to posterior shoulder soft tissue tightness.14;20 Laudner et al. investigated 
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the acute effects of the sleeper stretch and reported increased internal rotation (+3.1°) and 

horizontal adduction (+2.3°) ROM. These immediate changes are smaller than the changes found 

in this study after 6 weeks. McClure et al. found a similar amount of internal rotation ROM 

increase as in the present study after performing the sleeper stretch for 4 weeks (+12.4°) but an 

even larger increase after performing the cross-body stretch for 4 weeks (+20°). Future studies 

should determine if performing the cross-body stretch also brings about an increase of AHD and 

if it is superior to the sleeper stretch. 

 

This is the first study to show an influence of a 6 week sleeper stretch program on AHD. Though 

these differences are small, they might relate to a decreased subacromial pressure, both at rest 

and during active abduction.24 McClure et al. investigated the effect of posterior shoulder 

stretching combined with other stretching and strengthening exercises in a group of patients 

with subacromial impingement.22 They found that functional improvement of the patients was 

correlated with the increase of internal rotation range of motion. Future studies are needed to 

investigate if this finding of McClure et al. in patients with subacromial impingement can be 

explained by an increased AHD after stretching resulting in decreased subacromial pressure, less 

pain and better function. The protocol of the present study does not allow to formulate 

conclusions on the causal relation between GIRD and AHD. Combining our findings of decreased 

AHD at the dominant side with GIRD and a combined increase of internal rotation ROM and AHD 

after stretching can only suggest there is an association. The number of subjects included in this 

study was not sufficient to calculate a correlation between GIRD and AHD. Currently we tested 60 

more athletes with GIRD making a total of 122 athletes and in this population we were able to 

show a significant negative correlation between GIRD and AHD (unpublished data). Wilk et al. 

have shown a higher prevalence of shoulder injuries in overhead athletes with GIRD.42 

Prospective studies are needed to investigate if a stretching program can reduce this risk.  

 

The following limitations of this study should be mentioned. First, measuring AHD with 

ultrasound imaging gives a two-dimensional representation of the subacromial space and does 

not provide information on what happens to other aspects and to the volume of this three-

dimensional space. The results of this study do not allow attribution of the increased AHD to an 

altered position of the humeral head or scapula. Future studies need to examine the influence of 

a posterior shoulder stretching program on glenohumeral and scapulothoracic kinematics.  

Another limitation of our measurement technique is that it is limited to 60° of elevation because 

of acoustic shadowing at higher angles. As posterior shoulder tightness has been shown to have a 

more important influence at higher positions of elevation37 and at end range internal rotation4, 

this would be an interesting field for future studies. 
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Second, it is a limitation that the athletes and the assessors were not blinded for treatment 

group. This could have introduced measurement bias. In addition, adherence to the stretching 

program was not monitored in this study. However, the good results strengthen the belief that 

the sleeper stretch was performed to the best by the athletes in the stretch group. 

Lastly, it should be noted that we are not aware of the influence of age and type of sports activity 

on AHD. Our results cannot be generalized to other age categories. Although possibly 

subordinate at this recreational level, the heterogeneity of our study group with a majority of 

volleyball players could have influenced the results. In addition, future studies should include a 

population of baseball players as they present regularly with substantial range of motion 

adaptations. 

 

In conclusion, the results of this study showed a smaller AHD at the dominant side of overhead 

athletes with a GIRD of more than 15°. Performing the sleeper stretch for 6 weeks resulted in an 

increase of the AHD at the dominant side of the stretch group while the AHD remained unaltered 

in the control group. Our findings may provide further insight into the relation between GIRD and 

subacromial impingement. 
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ABSTRACT  

Objective First, to look for appropriate closed kinetic chain exercises to restore intramuscular 

imbalance between upper trapezius (UT) and serratus anterior (SA) in overhead athletes. Second, 

to determine the influence of using diagonal pattern muscle recruitment during knee push up 

plus (KPP) exercises on scapular electromyographic activity.  

 

Design Single group repeated-measures design.  

 

Setting Controlled laboratory study.  

 

Participants Thirty-two physically active individuals in good general health who did not have a 

history of neck and/or shoulder injury or surgery nor participated in highlevel overhead sports or 

performed upper limb strength training for more than 5 h/week.  

 

Interventions Subjects performed the standard KPP and six variations.  

 

Main outcome measurements Electromyographic activity of the three trapezius parts and the 

SA.  

 

Results Four exercises with a low UT/SA can be selected for rehabilitation of intramuscular 

balance: standard KPP, KPP with homolateral leg extension, KPP with a wobble board and 

homolateral leg extension and one-handed KPP. The use of a wobble board during KPP exercises 

and performance on one hand has no influence on SA electromyographic activity. Heterolateral 

leg extension during KPP stimulates lower trapezius activity, whereas homolateral leg extension 

stimulates SA activity.  

 

Conclusions In case of intramuscular scapular imbalance, some exercises are preferable over 

others because of their low UT/SA ratio. The use of a kinetic chain approach during KPP exercises 

influences scapular muscle activity.  
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INTRODUCTION 

Complexity of shoulder biomechanics is expressed in the high prevalence of shoulder injuries in 

overhead athletes.1 2 Recently, the role of the scapula in the pathogenesis of shoulder injuries has 

been given increasing interest.3–5 Scapular dyskinesis has been associated with subacromial and 

internal impingement.6–11 To regain a stable base for the humerus and allow for optimal throwing 

motion, scapular muscle training is an essential part in rehabilitation of overhead athletes.4 12 13  

 

The serratus anterior muscle (SA) is considered to be an important stabiliser of the scapula.14 

Provided cooperation with lower trapezius (LT), SA is optimally positioned to keep the scapula 

aligned with the thorax and ensure dynamic stabilisation. Weakness of SA is often present in 

overhead athletes with secondary impingement syndrome.15–17 Furthermore, intramuscular 

imbalance between SA and upper trapezius (UT) has been described.8 The challenge is to find 

exercises that specifically target the weak SA and minimally activate UT. In a study of Ludewig et 

al,18 electromyographic (EMG) activity of SA and UT was measured during the standard push up 

plus exercise (SPP) and modifications. SPP and knee push up plus (KPP) revealed highest SA 

activity and lowest UT/SA ratios and are therefore recommended for selective SA strengthening.  

 

Closed kinetic chain exercises have been shown to stimulate mechanoreceptors, which 

contribute to shoulder joint stabilisation.4 19–21 This stimulus is suggested to be enlarged by 

adding an unstable base, possibly resulting in higher EMG activity.22–24 However, no differences 

with respect to SA activity were found so far in push-up exercises performed on a mini-

trampoline or a Swiss ball.25–28  

Another push-up modification that possibly increases SA activity is performing the exercise on 

one hand. An EMG analysis by Uhl et al showed very high activity of the posterior deltoid and 

infraspinatus during one-handed KPP.29 However, they did not analyse SA muscle activity.  

In overhead athlete rehabilitation, a recent trend is the kinetic chain approach, which tends to 

incorporate other body segments in shoulder exercises.30 During a throwing motion, the body 

works as a dynamic unit and uses lower limbs and trunk to aim for the highest force and velocity 

at the hand of the throwing arm.31 Myofascial connections exist, by which lower limb muscle 

activity might influence scapular muscle activity. When the leg is extended, contraction of the 

gluteus maximus muscle tightens the thoracolumbar fascia. The stress of the thoracolumbar 

fascia is transmitted to the heterolateral scapula.32 33 The influence of leg extension on scapular 

muscle activity during push-up exercises has not yet been investigated.  

 

The first purpose of this study is to look for appropriate exercises to restore intramuscular 

imbalance between UT and SA and therefore show high SA activity with low UT/SA ratio. More 
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specifically, we wanted to investigate the influence of changing three aspects to the KPP on SA 

EMG activity and UT/SA ratio, namely, the addition of a wobble board, performance on one hand 

and extension of the homolateral or heterolateral leg.  

Second, we wanted to investigate the influence of using diagonal pattern muscle recruitment 

during KPP exercises on scapular EMG activity of the three trapezius parts and SA. 

 

MATERIALS AND METHODS  

Subjects  

Thirty-two physiotherapy students (16 men, 16 women) volunteered for this study. They were 

recruited at the department of Rehabilitation Sciences and Physiotherapy (Ghent University). 

Mean age was 22.88 years (2.43 years), mean height 1.73 m (0.09 m), mean weight 65.59 kg (8.14 

kg), and mean body mass index was 21.95 (±1.84). All participants were physically active, in good 

general health, without history of neck and/or shoulder injury or surgery. They did not participate 

in high-level overhead sports nor performed upper limb strength training for more than 5 h/week. 

All subjects gave informed consent. The Ethical Committee of Ghent University Hospital (Ghent, 

Belgium) approved the investigation.  

 

Instrumentation  

For registration of EMG activity of the three trapezius parts and SA, a Noraxon Myosystem 1400 

electromyographic receiver (Noraxon USA, Inc., Scottsdale, Arizona, USA) was used. Sampling 

rate for data collection was 1000 Hz (bandwidth of 10–1000 Hz). The device had a common mode 

rejection ratio of 115 dB. Gain was set at 1000 (signal-to-noise ratio <1 µV root mean square 

(RMS)).  

Skin surface was shaved and cleaned to reduce skin impedance (<10 kO). In all participants, the 

dominant side was tested. Bipolar Ag-Cl surface electrodes (Blue sensor; Medicotest, Ballerup, 

Denmark) were placed over UT, middle trapezius (MT), LT and SA. SENIAM (Surface 

ElectroMyoGraphy for the Non-Invasive Assessment of Muscles) recommendations were 

followed for electrode placement and interelectrode distance.34 Electrodes for UT were placed 

halfway between the spinous process of C7 and the posterior acromion. For registration of MT 

activity, electrodes were placed halfway on the horizontal line between the thoracic spine and 

the root of the scapular spine. Electrodes for registration of LT activity were placed obliquely 

upward and laterally along a line between the intersection of the scapular spine with the vertebral 

border of the scapula and the seventh thoracic spinous process.12 35–38 Electrodes for SA 

registration were applied anterior to the latissimus dorsi and posterior to the pectoralis major.18 26 

39 A reference electrode was placed on the sternal part of the homolateral clavicle.  

Correct electrode placement was checked and the signal was calibrated.  
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Testing procedure  

In the first part of the investigation, maximal voluntary isometric contractions (MVIC) of UT, MT, 

LT and SA were quantified for normalisation.12 38 40 MVIC of UT was measured during resisted 

isometric abduction. Participants were seated with the arm elevated 90°.41 To determine MVIC of 

MT, participants were lying prone with their dominant arm abducted 90° and externally rotated. 

In this position, resistance was applied to further horizontal abduction. For measurement of MVIC 

of LT, participants were lying prone with their dominant arm abducted so that the arm was in line 

with the muscle fibres. Resistance was applied to further horizontal abduction. MVIC of SA was 

quantified with the participants sitting with their arm flexed forward 130°. Resistance was applied 

to further elevation. Three repetitions of 5 s were performed with 5 s rest between contractions. 

This was controlled by a metronome (60 beeps/min). One investigator verbally encouraged the 

participants. Between MVIC measurements of different muscles, 2 min of rest was provided. This 

procedure has been used in other EMG studies and has proven useful.12 18 26 

 

In the second part of the investigation, participants performed standard KPP (fig 1) and six 

variations (fig 2). Sequence was randomised to avoid influence of learning or fatigue and prevent 

order biasing. A metronome was used to control speed of performance (60 beeps/min). 

Participants completed five repetitions of each exercise with 5 s of rest in between. Between two 

different exercises, there was a resting period of 2 min.  

 

 

Figure 1. Exercise 1, standard knee push up plus. 
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Figure 2. Exercise 2: Knee push up plus (KPP) with heterolateral leg extension. Exercise 3: 

KPP with homolateral leg extension. Extercise 4: KPP with a wobble board. Exercise 5: KPP 

with heterolateral leg extension and a wobble board. Exercise 6: KPP with homolateral leg 

extension and a wobble board. Exercise 7: one handed KPP.  

 

 

Signal processing and data analysis  

Myoresearch 98 Software Program was used for signal processing. Raw EMG signals were 

converted analog/digital (12-bit resolution) at 1000 Hz. The digital signals were full wave rectified 

and low-pass filtered (single pass, Butterworth, 6 Hz low-pass filter of the sixth order). Resting 

EMG activity was considered baseline activity. The three intermediate seconds of every 

repetition of MVIC were used for further analysis. EMG signals of the first and last repetition of 

the exercises were not accounted for.  

For all subjects, MVIC was averaged across the three intermediate seconds for each muscle. 

Mean EMG activity of each muscle was calculated across the three intermediate repetitions of 

every exercise, for all subjects. Those values were subsequently normalised and thus expressed as 

a percentage of MVIC.  

 

Statistical analysis  

SPSS V.15.0 for Windows (SPSS Science, Chicago, Illinois, USA) was used for statistical analysis. 

Means and SD were calculated across subjects for normalised UT, MT, LT and SA EMG activity of 

each exercise (table 1).  
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 UT MT LT SA 

Exercise Mean  SD Mean  SD Mean  SD Mean SD 

1 13,63 7,27 10,37 5,38 11,30 6,33 31,65 19,11 

2 18,31 13,17 14,55 8,28 20,12 10,07 23,43 14,66 

3 16,18 8,32 13,04 7,91 11,80 8,14 44,20 18,67 

4 13,67 8,00 10,11 5,42 10,44 5,90 25,30 15,77 

5 16,69 10,55 13,14 6,00 16,86 9,27 14,27 8,14 

6 14,39 7,67 11,44 6,69 10,75 6,68 30,46 15,60 

7 17,20 10,52 12,30 6,22 10,72 6,53 36,71 15,55 

Table 1. Mean normalized EMG activity of scapular muscles during 7 knee push up plus 

exercises (% of maximal voluntary isometric contraction). Exercise 1: standard knee push up 

plus (KPP). Exercise 2: KPP with heterolateral leg extension. Exercise 3: KPP with homolateral leg 

extension. Exercise 4: KPP with a wobble board. Exercise 5: KPP with heterolateral leg extension 

and a wobble board. Exercise 6: KPP with homolateral leg extension and a wobble board. Exercise 

7: one handed KPP. 

 

 

Ratios were calculated by dividing normalised EMG activity of UT by normalised EMG activity of 

SA for UT/SA ratio. Means and SD for UT/SA ratio were calculated (table 2). Ratios higher than 1 

are not desirable because this implies UT activity is higher than SA. Ratios lower than 1 suggest 

lower relative UT activity and therefore indicate an exercise is appropriate for restoring muscular 

balance.  

 

A Kolmogorov–Smirnov test showed normal distribution of the data. First, we wanted to detect 

differences in normalised EMG activity of UT, LT, MT and SA between the exercises. An analysis 

of variance (ANOVA) for repeated measures was performed for each muscle with “exercise” as a 

within-subjects factor (seven levels).  

Second, we were interested in finding differences in UT/SA ratios between the exercises. 

Therefore, ANOVA for repeated measures was performed with exercise as a within-subjects 

factor (seven levels). In case of significance of Mauchly’s test of sphericity, Greenhouse–Geisser 

correction was performed. The a level for ANOVA was set at 0.05. Post hoc analysis was done 

with Bonferroni correction for multiple comparison.  
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RESULTS  

Intramuscular balance UT/SA  

UT/SA ratios (table 2) were very advantageous in general. As to mean UT/SA ratios, clinically 

relevant and statistically significant differences were found (F=15.119; p<0.01). Exercise 3 shows 

the lowest UT/SA ratio of all exercises and is significantly different from UT/SA in exercises 1 

(p=0.001), 2 (p=0.005), 5 (p<0.001) and 6 (p<0.001). Thus, extension of the homolateral leg during 

KPP lowers the UT/SA ratio. Furthermore, UT/SA ratio in exercise 6 (0.54 (0.30)) is significantly 

lower than UT/SA in exercise 5 (p=0.002). This supports the positive influence on UT/SA ratio of 

homolateral leg extension. UT/SA ratios in exercise 2 (p=0.03) and in exercise 5 (p=0.002) were 

significantly higher than in the first exercise (KPP). Therefore we can conclude extension of the 

heterolateral leg results in a higher UT/SA ratio.  

UT/SA in exercise 2 is significantly lower than UT/SA in exercise 5 (p=0.017), and UT/SA in 

exercise 3 is significantly lower than UT/SA in exercise 6 (p<0.01). Apparently, addition of a 

wobble board results in an increase of UT/SA. Finally, UT/SA ratio in exercise 7 is not significantly 

different from UT/SA in exercise 1. One-hand support does not change UT/ SA ratio in 

comparison with standard KPP.  

 

SA EMG activity  

Statistical analysis showed significant differences in SA activity (table 1) between the exercises 

(F=59.048; p<0.001). When the homolateral leg is extended (exercise 3), SA activity is 

significantly higher than in all other exercises (p<0.001).  

SA activity in exercise 2 is significantly lower than in exercises 1 (p=0.001), 6 (p=0.004) and 7 

(p<0.001). SA activity in exercise 5 is significantly lower than in all other exercises (all p<0.001). 

Thus, heterolateral leg extension generates a lower mean SA EMG activity.  

SA activity in exercise 6 is significantly lower than SA activity in exercise 3 (p<0.001), which 

implies that adding a wobble board lowers SA activity. This phenomenon is also obvious when 

comparing SA activity in exercise 5 with that in exercise 2 (p<0.001) and when comparing SA 

activity in exercise 4 and exercise 1 (p<0.001). There is no significant difference in SA activity 

between exercises 7 and 1, which indicates performing a KPP on one hand has no influence on SA 

activity.  

 

UT, MT and LT EMG activity  

When considering mean normalised EMG activity of UT, MT and LT (table 1), values are overall 

very low during KPP and variations. We compared trapezius EMG activity in exercise 2 with that 

in exercise 1 and trapezius EMG activity in exercise 5 with that in exercise 4 because these 
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exercises only differ in the extension of the heterolateral leg. To clear out the influence of 

homolateral leg extension, we compared exercise 3 to 1 and exercise 6 to 4.  

LT mean normalised EMG activity shows consistent significant differences (F=25.795; p<0.001). 

Both exercises during which the heterolateral leg was extended show a significantly higher LT 

activity than all other exercises. LT activity in exercise 2 is significantly higher than LT in exercises 

1 (p<0.001) and LT activity in exercise 5 is significantly higher than LT in exercise 4 (p<0.001).  

There is no significant difference in LT activity when the homolateral leg is extended. With regard 

to UT and MT mean normalised EMG activity, significant differences were present, but none of 

them were useful to answer our research questions. There was no pattern present in the results 

for EMG activity of the upper two trapezius parts.  

 

DISCUSSION  

From a clinical point of view, it is especially of interest which exercises are appropriate for 

restoration of scapular muscle balance in overhead athletes. Four exercises, showing low UT/SA 

ratio, can be selected, namely, standard KPP, KPP with homolateral leg extension, KPP on a 

wobble board with homolateral leg extension and one-handed KPP. KPP with extension of the 

homolateral leg shows the lowest UT/SA ratio with highest mean SA activity (44.20%). These 

closed kinetic chain exercises should be used in the early stages of scapular strength training.42 43 

Once a stable scapular base is achieved, shoulder rehabilitation should gradually progress 

towards functional open chain exercises.  

 

To investigate more specifically the effect of an unstable surface on SA muscle activity, we 

compared exercises 2 and 5, 3 and 6, and 1 and 4 because the presence of a wobble board is the 

only difference between them. SA activity decreased by adding a wobble board. This is possibly 

due to the higher position of the hands, placing more weight on lower and less on upper 

extremities. Lehman et al found similar results. They showed SA activity increases when more 

weight is placed on the upper extremities by elevating the feet during SPP.27 Further research 

should investigate if eliminating height difference in upper and lower extremity support or adding 

an unstable base at lower extremity support results in higher SA EMG activity. However, we 

should be aware of the possibility that the use of an unstable surface influences other aspects of 

motor control, such as muscle timing or recruitment patterns, rather than muscle activity itself.  

To answer the question whether SA muscle activity changes when KPP is performed on one 

hand, we compared exercises 1 and 7. Our results showed no significant differences, which 

indicates that SA muscle activity is not influenced by performance on one hand. Other muscles 

than SA probably provide the additional stabilising muscle activity needed.  

 



 
STX Chapter 5 

The second objective of this study was to identify the influence of leg extension on scapular EMG 

activity. Many clinicians use the principle of the kinetic chain in athlete shoulder rehabilitation, 

mostly by extending the heterolateral leg to increase scapular activity in a diagonal pattern, but 

there has never been any investigation to confirm this approach. To answer this question, we 

compared scapular muscle activity during exercise 1 and exercises 2 and 5. When extending the 

heterolateral leg, LT activity increases and SA activity decreases. Myofascial connections, as 

described by Meyers et al and Porterfield and DeRosa, can provide a possible explanation for 

these results.32 33 Extension of the heterolateral leg generates gluteus maximus activity, which 

tightens the thoracolumbar fascia in the direction of the contralateral scapula. This probably 

facilitates LT with consequently higher muscle fi bre recruitment. It would be interesting to 

investigate the role of the latissimus dorsi in this. Possibly, the scapula is destabilised by this 

muscle when the heterolateral leg is extended and therefore requires higher LT activity.  

SA on the other hand has been described as part of an anterior flexion chain that runs from the 

heterolateral leg flexion musculature and internal oblique muscle, through the homolateral 

external oblique muscle to SA. When the heterolateral leg is extended, antagonistic leg flexion 

musculature is inhibited. Consequently, the anterior flexion chain is not operative. This could 

explain why SA activity is lower when the heterolateral leg is extended.  

To clear out the influence of homolateral leg extension, we compared scapular muscle activity 

during exercise 1 and exercises 3 and 6. Because there were no differences in LT activity, we can 

conclude homolateral leg extension has no effect on LT muscle fibre recruitment. This is in 

agreement with the explanation given above. When the homolateral leg is extended, this exerts 

an effect to the heterolateral scapula along the posterior extension chain but not to the 

homolateral shoulder. The heterolateral leg bears more weight, resulting in a higher stabilising 

muscle activity encompassing the hip. This activates heterolateral internal oblique muscle, which 

in turn stimulates homolateral external oblique muscle activity, possibly resulting in higher SA 

muscle fibre recruitment.  

 

Extrapolation of these results to other age categories or to shoulder patients should be 

performed with caution because our study population consisted of young, healthy subjects. 

Ludewig et al18 investigated scapular EMG activity during push-up exercises in both healthy 

subjects and subjects with shoulder dysfunction. They found no differences in how both groups 

responded across the exercises. However, it is more appropriate to investigate this with the 

exercises from this study before drawing conclusions. Furthermore, we should note that although 

our results are a good basis for selection of appropriate exercises for rehabilitation of scapular 

intramuscular balance, no proof has been given that training results in better scapular function. 

This is an interesting topic for further investigation.  
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Another important limitation of this study is the use of surface EMG during dynamic movements. 

Precautions were taken by following SENIAM prescriptions and by maximal standardisation and 

accuracy.34 In addition, we strictly followed recommendations of previous investigations that 

used surface EMG to analyse scapular muscle activity.12 18 26 44 However, despite precautions, cross 

talk could have occurred during measurements.  

 

CONCLUSION  

We investigated scapular EMG activity during KPP and six commonly used variations. Four 

exercises with low UT/SA ratio can be selected for rehabilitation of intramuscular balance in 

overhead athletes with scapulothoracic dysfunction: standard KPP, KPP with homolateral leg 

extension, KPP with a wobble board and homolateral leg extension and one-handed KPP. The 

use of a wobble board during KPP exercises nor the performance of KPP on one hand has an 

influence on scapular muscle EMG activity. It would be interesting to investigate other aspects of 

motor control, such as muscle timing and recruitment patterns, during KPP exercises and 

variations.  

When using a kinetic chain approach during KPP, heterolateral leg extension increases LT 

activity, whereas homolateral leg extension increases SA activity. Further research should 

investigate EMG activity of the important muscles involved in anterior and posterior muscle 

chains, such as gluteus maximus, latissimus dorsi and the abdominal muscles, to determine their 

role in this.  
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ABSTRACT 

Purpose To investigate superior value of adding heavy load eccentric training to conservative 

treatment in patients with subacromial impingement.  

 

Methods Sixty-one patients with subacromial impingement were included and randomly 

allocated to the traditional rotator cuff training (TT) group (n=30, mean age=39.4 ±13.1 years) or 

traditional rotator training combined with heavy load eccentric training (TT+ET) group (n=31, 

mean age=40.2 ±12.9 years). Isometric strength was measured to abduction at 0°, 45° and 90° of 

scapular abduction and to internal and external rotation. The SPADI questionnaire was used to 

measure shoulder pain and function. Patients rated subjective perception of improvement. 

Outcome was assessed at baseline, at 6 and 12 weeks after start of the intervention. Both groups 

received 9 physiotherapy treatments over 12 weeks. At home, the TT group performed 

traditional rotator cuff strengthening exercises 1x/day. The TT+ET group performed the same 

exercises 1x/day and a heavy load eccentric exercise 2x/day.  

 

Results After treatment, isometric strength had significantly increased in all directions and 

SPADI-score had significantly decreased. The TT+ET group showed a 15% higher gain in 

abduction strength at 90° of scapular abduction. Chi-square tests showed patients self-rated 

perception of improvement was similar in both groups. 

 

Conclusion Adding heavy load eccentric training resulted in a higher gain in isometric strength at 

90° of scapular abduction but was not superior for decreasing pain and improving shoulder 

function. This study showed that the combination of a limited amount of physiotherapy sessions 

combined with a daily home exercise program is highly effective in patients with impingement. 

 

Level of Evidence 2 

 

Keywords shoulder impingement syndrome, physiotherapy, eccentric training, tendon 

  



 

 

STR Chapter 6 

INTRODUCTION 

In current clinical practice, shoulder patients make up a large part of total patient population [6]. 

Disorders of the rotator cuff are the most common cause of shoulder pain [37]. When Neer 

introduced the term “subacromial impingement” in 1972, this referred to mechanical abrasion of 

the subacromial structures against the anterior undersurface of the acromion and coracoacromial 

ligament [26]. The supraspinatus tendon is usually the most affected structure due to its position 

in the subacromial space. Histological examinations of the supraspinatus tendon in patients with 

impingement syndrome have shown degenerative changes, similar to the changes found in 

Achilles and patellar tendinosis.[16] 

 

The presence of tendon degeneration in patients with impingement could have important 

implications for treatment. Possibly physiotherapy should not only focus on decreasing 

impingement but should additionally address this tendon degeneration. In patella and Achilles 

tendinopathy, eccentric training has shown to not only decrease pain and improve function but 

also repair tendon tissue [18,24,28]. The Achilles tendon was shown to respond to eccentric 

training load with an increased collagen production [18]. As to rotator cuff tendinopathy, three 

studies have been executed and have shown promising clinical results [4,7,14]. Jonsson et al 

investigated the effect of an eccentric empty can (thumb down) abduction exercise for the 

supraspinatus without additional treatment in 9 patients with impingement [14]. Five patients 

were satisfied with treatment and showed less pain and better function after 12 weeks of 

training. Bernhardsson et al investigated the effect of eccentric rotator cuff training in 10 subjects 

with subacromial impingement and showed decreased pain in 8 of 10 subjects and better 

function in all subjects after 12 weeks [4]. Due to small sample size and the lack of a control group 

in both studies, conclusions cannot be drawn. Recently, Camargo et al showed good results with 

an isokinetic eccentric training program in a larger group of patients with impingement (n=20) 

[7]. Still it remains unclear whether eccentric training would substantially augment results of 

traditional conservative treatment. 

The aim of this study was to examine superior value of adding heavy load eccentric training to 

conservative rehabilitation with respect to increasing strength and decreasing pain and 

dysfunction. The hypothesis was first, that both groups would have increased strength and 

decreased pain and dysfunction after rehabilitation and second, that adding eccentric training 

would lead to superior results.  
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MATERIALS AND METHODS 

Prior to the intervention, baseline outcome measurements were performed. Subsequently, 

patients were randomly allocated to the traditional rotator cuff strength training (TT) group or 

the TT combined with heavy load eccentric training (TT+ET) group. All exercises were performed 

at home for 12 weeks. Both groups attended one physiotherapy session (30’) a week during the 

first period of 6 weeks and one every two weeks during the last period of 6 weeks (9 sessions in 

total). Outcome variables were reassessed at 6 and at 12 weeks after the start of the intervention.  

 

 

Setting and Participants 

Sample size was estimated based on variability of pilot data. Isometric strength to abduction at 

90° of scapular abduction was chosen to calculate sample size as this test is used for manual 

muscle testing of the supraspinatus. To detect a difference between groups of 10% with a 

probability level of α=0.05 and a statistical power of p=0.80, 27 subjects were required in each 

group. A difference in isometric strength of 10% or more was previously reported to be clinically 

significant [36]. All subjects were recruited by a specialized shoulder surgeon based on a 

thorough history and physical examination. The surgeon referred for technical investigation 

when there was doubt upon the diagnosis. The inclusion criteria were: aged over 18 years, 

unilateral pain for at least 3 months in the anterolateral region of the shoulder, painful arc, 2 out 

of 3 impingement tests positive (Hawkins [10], Jobe [13] and/or Neer [25]), 2 out of 4 resistance 

tests painful (full can (thumb up) abduction at 90°, resisted abduction at 0°, resisted external or 

internal rotation with the arm adducted) and pain with palpation of the supraspinatus and/ or 

infraspinatus tendon insertion [8]. The exclusion criteria were: demonstration of partial or full 

ruptures of the rotator cuff by technical investigation (either ultrasound or MRI), history of 

shoulder surgery, shoulder fracture or dislocation, traumatic onset of the pain, osteoarthritis, 

frozen shoulder, traumatic glenohumeral instability or shoulder nerve injuries. Patients with 

concomitant disorders, such as cervical pathology or systemic musculoskeletal disease, were also 

excluded from the study. No physical therapy nor corticosteroid injections could have been 

received within 2 months prior to the study.  

The Committee on Ethics of Ghent University approved the study and informed consent was 

obtained from each subject.  

 

Intervention 

The TT group performed two traditional rotator cuff strengthening exercises at home: internal 

and external rotation resisted with an elastic band (Thera-Band, The Hygienic Corporation, 

Akron, Ohio). (Figure 2 (appendix)) Each exercise was performed once a day for 3 sets of 10 
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repetitions. Patients were instructed to perform the exercises at a speed of 6”/repetition (2” 

concentric phase, 2” isometric phase and 2” eccentric phase). Color of the band was chosen so 

that the patient did not experience significantly more pain during the exercise than at rest. Load 

was increased by changing color of the elastic band as soon as pain decreased. 

 

The TT+ET group performed the same exercises as the TT group and in addition to that a heavy 

load eccentric exercise. The eccentric phase of full can (thumb up) abduction in the scapular plane 

was performed with a dumbbell weight. (Figure 3 (appendix)) Patients were instructed to perform 

the eccentric phase at a speed of 5”/ repetition. Three sets of 15 repetitions were performed twice 

a day.[1] Starting position of the eccentric phase at full scapular abduction had to be pain free 

and if not, patients were advised to stretch out the arm at a slightly lower degree of scapular 

abduction. Dosing the eccentric exercises was based on the pain monitoring model [34,35]. Three 

conditions had to be met:  

1. During the last set of 15 repetitions the patient should feel pain exceeding the pain 

at rest but no more than a score of 5 on the VAS (0-10) is allowed.  

2. Pain after the exercise should not exceed 5 on the VAS and should have subsided 

the following morning.  

3. Pain should not increase from day to day. 

Whenever the pain was no longer present during the last set of repetitions, dumbbell weight was 

increased with 0,5kg. 

All patients completed a daily log book to record pain during the exercises and adverse events.  

 

Physiotherapy treatment sessions were firstly aimed at correcting some important factors that 

could contribute to subacromial impingement and prohibit good performance of the home 

exercises. Composition of this treatment was based on previous reviews [17,32]. A detailed 

description of these treatment components can be found in table 6 (appendix). Secondly, these 

sessions were aimed at correcting performance of the exercises, increasing load and emphasizing 

the importance of adherence to the home exercises. 

No other strengthening exercises were allowed to be added to the program and participants were 

requested not to seek other forms of treatment during the trial.  

 

Outcomes and Follow-up 

All tests were completed at the laboratory of the Department of Rehabilitation Science and 

Physiotherapy of Ghent University. This investigator could not be blinded to treatment group.  
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A hand-held dynamometer (HHD; CompuFet; Hoggan health Industries inc, West Jordan, Utah, 

USA) was used to measure isometric strength. Hand-held dynamometry has been shown to 

exhibit acceptable reliability when tested on patients with strength deficits (ICC ranging from 

0.78 to 0.85) [5,22]. The device was calibrated prior to commencing the study and was used at 

low threshold to record strengths larger than 2.7N with a sensitivity of 0.9N.   

During all tests, patients were seated without back support and with feet flat on the ground,. 

With the non-tested arm they grasped the chair to stabilize themselves. Strength to abduction 

was measured at 3 arm positions: 0°, 45° and 90° of abduction in the scapular plane. These 

positions were verified using an AcumarTM digital inclinometer (model ACU360, Lafayette 

Instrument Co.; Lafayette, IN). At 0° of abduction, the arm was along the body with the elbow 

flexed 90° and the lower arm pointing in anterior direction. The HHD was placed against the 

lateral epicondyle. At 45° and 90° of abduction the arm was in a full can position with the elbow 

extended and the HHD was placed at the radial distal part of the lower arm. External and internal 

rotation strength were measured with the arm along the body, the elbow flexed 90° and the 

lower arm again pointing forward. The HHD was placed against the dorsal distal part of the lower 

arm. Three maximal isometric contractions of 5 seconds duration were performed in each 

direction. Standardized verbal encouragement was given during isometric strength 

measurements. There was a rest period of 30” between trials. Peak torque of each trial was 

registered. For further analyses, peak torque was averaged over these three trials. 

 

Patients filled in the SPADI questionnaire to evaluate pain and function. This questionnaire is a 

self-administered, shoulder specific index consisting of 13 items, divided into two subscales, pain 

and function with responses to each item scored on a 10 point scale. The SPADI score has shown 

high test-retest reliability (ICC 0.95)  in patients with rotator cuff tendinopathy and high 

responsiveness to change [22,23]. All items were summed and averaged to obtain scores out of 

100. Higher scores indicate more pain and disability.  

 

Patients rated their subjective perception of improvement of their shoulder pain as “improved”, 

“not changed” or “worse”. If they selected “improved” or “worse”, the amount of change was 

scored on a 5 point scale (very little change, little change, some change, a large change, a very 

large change). “No change” equaled a score of 0, “better” was scored between 1 and 5 and 

“worse” between -1 and -5. 

 

Statistical Analysis 

Data were analyzed using SPSS Statistics 19 (SPSS Inc., Chicago, IL). A level of 5% was used to 

determine significant differences. Intention to treat principle was respected and all patients were 
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included in analysis as randomized. Anthropometrics and baseline outcome were compared 

between groups with independent sample t-tests and a Chi-square test. Evolution of outcome 

measures over the three time points was analyzed for both groups using linear regression 

modeling with adjustment for baseline outcome levels. To determine treatment effect of the 

intervention over time, within-group effect sizes were calculated using Cohen’s d coefficient 

(
����	��	��	
����	��	����	�

(��	��	���	��)/	
).  In this equation effect size is expressed as a function of standard 

deviation. For example, an effect size of 0.4 reflects a difference between means of 0.4 of one 

standard deviation. An effect size less than 0.2 was considered small, around 0.5 moderate and 

greater than 0.8 large. Difference in progression between groups was analyzed using linear 

regression modeling with adjustment for baseline outcome levels. To determine the importance 

of the difference in progression between groups, between-group effect sizes were calculated as 

����	��
����	��

(��	�����	��)/	
.	 Model assumptions were checked by plotting obtained and expected residuals. 

Patients self-rated perception of improvement scores after 6 and after 12 weeks of treatment 

were compared between groups with chi-square tests. 

 

RESULTS 

Flow of participants is illustrated in figure 1. In total 83 patients were assessed for eligibility. Of 

these, 61 were included and randomly assigned to the TT+ET group (n=31) and the TT group 

(n=30). At the 6th week, 85% and at the 12th week 82% of included patients were available for 

assessment. Reasons for discontinuing the intervention are detailed in figure 1.  
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Figure 1. Participants flow diagram 
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Anthropometrics of both groups are presented in table 1. Groups did not differ significantly in any 

of them. Group data for all outcome measures at baseline and at 6 and 12 weeks after the start of 

treatment are presented in table 2 (SPADI and isometric strength). Improvement over time with 

corresponding within-group effect sizes are presented in table 3 and differences in improvement 

over 12 weeks between the TT+ET and TT group and the corresponding between-group effect 

sizes are presented in table 4.  

 

Both groups showed an overall significant increase of isometric strength over time in direction of 

abduction at 0° (p<0.001) and 45° of scapular abduction (p<0.001) and in direction of external 

(p<0.001) and internal rotation (p=0.038). Post hoc tests (table 3) demonstrated significant 

increase of strength from 0 to 6 weeks but not from 6 to 12 weeks for abduction and external 

rotation strength. Internal rotation strength was only significantly increased in both groups when 

evaluated over the whole 12 week period (TT+ET group: p=0.038; TT group: p=0.006). Treatment 

effect on isometric strength to abduction at 0 and 45° and isometric strength to external and 

internal rotation was not significantly different between groups. (Table 4) 

Isometric strength to abduction at 90° of abduction increased significantly in the TT+ET group 

after 12 weeks of treatment (Mean difference= 14.7N (19.7), p<0.001, within-group effect size= 

6.2). (Table 3) In the TT group this strength was not significantly increased after 12 weeks (Mean 

difference= 5.1N (19.8), n.s., within-group effect size=0.6). The TT+ET group had a 15% higher 

gain in isometric strength at 90° after 12 weeks than the TT group (p=0.033), with respect to 

baseline values, with a between-group effect size of 0.7. (Table 4) 

 

In both groups, pain and function, measured with the SPADI score, improved significantly over 

time (p<0.001). Post hoc tests showed a decreased SPADI score after 6 (p<0.001) and after 12 

weeks (p<0.001). (Table 3) When comparing between groups, improvement of the SPADI score 

was not significantly different. (Table 4) Eighty-five per cent of patients in the TT+ET group and 

89% in the TT group achieved a reduction in the SPADI score of minimum 10 points, which has 

been previously reported to indicate a clinically important improvement [38].  

 

Patients self-rated perception of improvement was not significantly different in the TT+ ET and the 

TT group both at 6 weeks and at 12 weeks after the start of the intervention. (Table 5)  No 

patients had the impression that their shoulder got worse than prior to treatment.    
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Table 1 Anthropometrics of the eccentric and traditional training group. (Mean (SD)) 

  Anthropometrics  

 TT+ET (n=31) TT (n=30) p-value 

Age (years) 40.16 (12.91) 39.43 (13.05) .827 

Height (cm) 169.56 (10.40)  169.46 (8.52) .969 

Body Mass (kg) 70.08 (14.27) 69.40 (10.26) .831 

BMI (kg/m²) 24.24 (3.24) 24.14 (3.84) .972 

Gender F:M  16:15 20:10 .059 

Abbreviations: ET, eccentric training; TT, traditional rotator cuff training; BMI, Body Mass 

Index; F, Female; M, Male. 

 

  



 

 
 

Table 2 Covariate-adjusted means for outcome at baseline, at 6 and at 12 weeks after start of the intervention*  

 

Groups 

Outcome 

Week 0 Week 6 Week 12 

TT+ET TT TT+ET TT TT+ET TT 

SPADI 42.01 (10.97) 44.30 (11.45) 25.40 (11.85) 17.68 (11.96) 16.95 (11.38) 14.54 (11.72) 

Isom F abd 0° 127.9 (27.61) 123.18 (28.04) 150.78 (27.59) 142.69 (27.49)  154.26 (27.62) 147.05 (27.24 

Isom F abd 45° 71.22 (12.30) 68.19 (12.27) 79.68 (12.00) 81.70 (11.96) 81.64 (12.22) 83.48 (11.81) 

Isom F abd 90° 64.74 (12.64) 63.02 (12.71) 74.80 (12.31) 72.46 (12.34) 78.02 (12.54) 70.02 (12.21) 

Isom F ext rot 82.89 (12.53) 83.39 (12.87) 94.34 (12.21) 90.47 (12.48) 96.02 (12.44) 92.65 (12.34) 

Isom F int rot 121.71 (17.93) 118.99 (18.18) 126.48 (17.56) 123.15 (17.45) 128.98 (17.94) 125.03 (17.17) 

Abbreviations: Isom F, Isometric Strength; abd, abduction; ET, eccentric training; TT, traditional rotator cuff training. 

*Values are mean of groups (SD, adjusted for baseline scores, from linear mixed model. Isometric Strength in Newton. 
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Table 3 Covariate-adjusted mean differences within groups 

 

Differences within groups over time
† 

 

Within Group 

Effect Size  

Out-come 

Week 0 to week 6 Week 6 to week 12 Week 0 to week 12 
Week 6 to week 

12 

TT+ET 
p-

value 
TT 

p-

value 
TT+ET 

p-

value 
TT 

p-

value 
TT+ET 

p-

value 
TT 

p-

value 
TT+ET TT 

SPADI 
17.08 

(14.08) 

<.001 

* 

24.06 

(14.40) 

<.001 

* 

7.50 

(14.66) 

.008 

* 

1.64 

(14.44) 
1.00 

25.69 

(15.79) 

<.001 

* 

27.03 

(19.52) 

<.001 

* 
2.28 2.60 

Isom F abd 0° 
26.25 

(26.76) 

.016 

* 

19.51 

(26.55) 

<.001 

* 

9.65 

(36.72) 
1.00 

-0.15 

(36.36) 
1.00 

31.45 

(32.24) 

.005 

* 

17.28 

(38.19) 

<.001 

* 
0.95 0.85 

Isom F abd 45° 
11.11 

(13.87) 

.013 

* 

12.13 

(13.60) 

<.001 

* 

3.80 

(13.17) 
1.00 

-0.09 

(13.06) 
1.00 

12.82 

(16.00) 

.001 

* 

12.45 

(18.96) 

<.001 

* 
0.85 1.29 

Isom F abd 90° 
11.60 

(13.82) 

.002 

* 

9.46 

(13.79) 

.007 

* 

4.47 

(13.02) 
.788 

-4.13 

(13.01) 
1.00 

14.70 

(19.74) 

<.001 

* 

5.09 

(19.76) 
.059 6.15 0.55 

Isom F ext rot 
12.12 

(14.19) 

.001 

* 
8.60 (14.68) 

.020 

* 

1.78 

(10.53) 
1.00 

2.52 

(10.73) 
1.00 

13.15 

(16.12) 

<.001 

* 

10.17 

(18.63) 

.002 

* 
1.05 0.71 

Isom F int rot 
12.15 

(21.56) 
.182 

5.59 

(21.48) 
.261 

8.14 

(18.73) 
1.00 

3.41 

(18.69) 
.386 

18.08 

(24.76) 

.038 

* 

7.33 

(24.73) 

.006 

* 
0.40 0.33 

Abbreviations: Isom F, Isometric Strength; abd, abduction; ET, eccentric training; TT, traditional rotator  cuff training. 
†Values are mean difference within groups over time (SD). Isometric Strength in Newton. Positive values indicate improvement. 
*The mean difference is significant at the ,05 level  
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Table 4 Covariate-adjusted mean differences between groups 

 

Difference between groups in progression  

from 0 to 12 weeks
† 

(TT+ET group – TT group) 

Between-group Effect 

Size 

Outcome 

 

p-value  

SPADI 1.34    (-6.97 to 9.65) 0.706 0.21 

Isom F abd 0° 14.17  (-8.75 to 37.09) 0.203 0.26 

Isom F abd 45° 0.37    (-9.68 to 10.43) 0.708 -0.16 

Isom F abd 90° 9.61    (-0.68 to 19.90) 0.033* 0.68 

Isom F ext rot 2.97    (-6.70 to 12.64) 0.490 0.27 

Isom F int rot 10.74  (-4.12 to 25.61) 0.144 0.23 

Abbreviations: Isom F, Isometric Strength; abd, abduction; ET, eccentric training; TT, traditional rotator cuff training. 

†Values are mean difference between groups (95% CI) in progression between 0 and 12 weeks. Isometric Strength in Newton.  

Positive values favor the eccentric training group. 

* The mean difference is significant at the ,05 level  
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Table 5 Patients self-rated perception of improvement at 6 and 12 weeks after the start of the intervention (% of group) 

 6 weeks follow-up 12 weeks follow-up 

 TT+ET TT TT+ET TT 

 N % of total group N % of total group N % of total group N % of total group 

0 (no change) 2 6.7% 2 7.4% 0 0.0% 0 0.0% 

1 (very small improvement) 0 0.0% 4 14.8% 1 3.7% 0 0.0% 

2 (small improvement) 3 10.0% 4 14.8% 3 11.1% 2 10.0% 

3 (some improvement) 11 36.7% 7 25.9% 9 33.3% 5 25.0% 

4 (large improvement) 14 46.7% 9 33.3% 9 33.3% 9 45.0% 

5 (very large improvement) 0 0.0% 1 3.7% 5 18.5% 4 20.0% 

Total 30  27  27  20  

Abbreviations: ET, eccentric training; TT, traditional rotator cuff training; N= number of subjects.
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DISCUSSION 

The most important finding of this study was that the TT+ET group showed a 15% higher gain in 

abduction strength at 90° of abduction than the TT group with a moderate between-group effect 

size. However, eccentric training did not result in less pain or better shoulder function than 

traditional rotator cuff training after 12 weeks. It was shown that both groups had significantly 

increased isometric strength, decreased pain and better function after 12 weeks of treatment. 

Moderate to large within-group effect sizes were demonstrated for all outcome variables.  

Although we did not include a third “no treatment” group to ascertain this, natural recovery is 

unlikely to explain these improvements of pain, function and strength. Other clinical trials found 

minimal changes over time in control groups receiving no treatment [20,21]. 

 

This is the first randomized clinical trial that investigated the effect of adding eccentric training to 

conservative treatment in patients with subacromial impingement. Eccentric training has shown 

good results in treatment of several tendon disorders. This type of exercise has been shown to 

increase collagen production [18], decrease neovascularization [27] and normalize the pathologic 

tendon structure [28]. Three studies have been published on eccentric training in patients with 

shoulder impingement [4,7,14]. Jonsson et al showed less pain and better function after 12 weeks 

of eccentric training in patients with impingement [14]. Main differences with our eccentric 

exercise were the lower dosage and the use of the empty can position in the study of Jonsson and 

colleagues. It has been shown that the empty can position, being internal rotation in an abducted 

position, narrows the subacromial space and exercising in this position could further impinge the 

rotator cuff tendons [29]. Moreover, Reinold et al have shown that the full can exercise is best to 

maximize supraspinatus activity with the least amount of deltoid muscle activity [30]. 

Bernhardsson et al showed decreased pain and better function after 12 weeks of eccentric rotator 

cuff training [4]. The exercises were performed in side-lying and aimed for infraspinatus and 

supraspinatus but further details on performance are lacking. Recently, Camargo et al 

investigated the effect of eccentric isokinetic training (abduction from 20° to 80°) in 20 patients 

with shoulder impingement. Pain and disability had significantly decreased after 6 weeks but 

isokinetic variables were only moderately changed after the intervention. The volume of their 

eccentric training program (3x10, twice a week, 6 weeks) was much lower than in the present 

study (3x15, twice a day, 12 weeks) so this could have accounted for smaller changes over time in 

the isokinetic strength evaluations in the study of Camargo et al. A limitation of this study is the 

inability to transfer the results to clinical practice as isokinetic devices are rarely available in this 

setting.  
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Our results are in line with the above described studies but though the TT+ET group showed a 

15% higher gain in abduction strength at 90° of abduction, this made no difference for the SPADI 

score after 12 weeks. A difference in isometric strength of 10% is considered clinically significant 

[36]. As our TT+ET group performed the eccentric abduction exercise, this is evidently the reason 

why they had a higher strength gain compared to the TT group. Isometric full can abduction at 

90° is used as a clinical test to assess supraspinatus pain and function [12,15]. To attribute the 

higher increase in isometric strength in this position to the supraspinatus is not appropriate since 

there are no data on tendon healing nor on EMG muscle activity of the supraspinatus available in 

this study.  

There is still no consensus on the underlying mechanism of eccentric training. In patients with 

Achilles tendinopathy it is believed that strengthening is not the only responsible factor for 

clinical improvement after eccentric training [2]. Effects on neovascularization [27] and tendon 

properties [24] have been suggested to explain the good results. Future studies should 

investigate the immediate and long term effect of a heavy load eccentric exercise on specific 

properties of the supraspinatus muscle and tendon. Perhaps eccentric training should not be 

performed to improve clinical symptoms but to strengthen the tendon and restore degeneration. 

It should be noted that this study might have been underpowered for detecting differences 

between groups in the SPADI score. Previous studies have reported a sample size of 60 patients 

in each group is required to detect differences in treatment effect [3,9]. Moreover, future trials 

should distinguish between subpopulations, based on responsible mechanism for tendinopathy 

[19] and accounting for age, gender and activity level. A next step, after investigating the 

influence of adding eccentric training, could be to compare between traditional training and 

eccentric training.  

 

As both groups improved over time, traditional rotator cuff home exercises combined with 

physiotherapy treatment seems to have determined improvement of pain and function in  our 

patients with subacromial impingement while adding an eccentric training program did not alter 

this. Rotator cuff training with an elastic band has been the standard home exercise programme 

for patients in our area for a long time. A loss of rotator cuff strength has been associated with 

upward humeral translation [11,31,33]. By strengthening the rotator cuff clinicians aim to increase 

downward translation of the humeral head during abduction and keep the subacromial space 

large enough.  

It is important to mention that the largest progression was made during the first 6 weeks. 

Isometric strength to internal rotation was the only direction of strength in which no significant 

improvement was present after the first 6 weeks. The low amount of strength deficit of the 
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painful side compared to the healthy side could give a plausible explanation for this finding. 

Possibly internal rotation strength was least affected. 

Most improvement of pain and function also took place during these first 6 weeks. This time 

period might be a good guideline for therapists when to expect an effect of their treatment and 

for patients performing home exercises when to expect improvement. 

 

At least three limitations must be taken into account when interpreting the results. Firstly, the 

treating physiotherapist and the investigator that collected data could not be blinded to 

treatment group so the influence of their expectations about treatment cannot be excluded. As 

both groups show marked improvement over time, the effect of these beliefs was probably 

marginal. Secondly, the lack of stratification for gender in randomization resulted in unequally 

distributed gender among the groups. The TT+ET group contained more men and was 

consequently stronger at baseline. We corrected for this difference by adjusting for baseline 

isometric strength values in statistical analysis. Thirdly, this study could not provide information 

on long term follow up of the patients so it is not clear how long improvements lasted. 

The investigators standardized the intervention in a way that corresponded well with current 

clinical practice. This augments the clinical relevance and ability to transfer results of this study to 

clinical practice. The home exercises are very easy to perform and might decrease the need for 

hands-on physiotherapy, reducing medical costs.  

 

CONCLUSION 

It was shown that a 12 week traditional rotator cuff home training combined with 9 

physiotherapy treatments was successful in increasing isometric strength and decreasing 

shoulder pain and dysfunction in patients with subacromial impingement. Adding heavy load 

eccentric training resulted in a higher gain of isometric strength at 90 ° of scapular abduction. 

This study supports the integration of an eccentric training program into a multimodal 

rehabilitation program. In addition, this study provided evidence that combining a limited 

amount of physiotherapy treatment session with a home exercise program is highly effective. 

Largest progression should be expected in the first 6 weeks of rehabilitation. 
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APPENDIX 

Figure 2. Resisted internal (a) and external rotation (b) with rubber band 

 

Figure 3. Eccentric full can abduction exercise  

 

Table 6. Additional individualized physiotherapy treatment 

Treatment 

component Description 

Information  

 

Information on basic anatomy of the shoulder  (humerus, glenoid and scapula 

and position of the rotator cuff tendons) and pathology of subacromial 

impingement 

Glenohumer

al 

mobilization 

Traction perpendicular to the glenoid surface with patient lying supine  

Inferior translation of the humeral head with patient lying supine 

Posterior translation of the humeral head in internally rotated position with 

patient lying supine 

Angular mobilizations in all directions 

Scapulothor

acic 

mobilization 

Mobilization  of the scapula towards upward/downward rotation, 

posterior/anterior tilt, elevation/ depression and retraction/ protraction 

Scapula 

setting 

Motor learning with patient prone and seated, manual feedback onto coracoid 

process and inferior angle of the scapula or onto the lower trapezius muscle to 

facilitate contraction.   

Posture 

correction 

Patients were instructed to erect the thoracic spine by diminishing the curve of 

thoracic kyphosis. Manual feedback was provided. 
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1. SUMMARY AND CLINICAL IMPLICATIONS OF THE RESULTS  

 

PART I. MECHANISMS ASSOCIATED WITH ROTATOR CUFF TENDINOPATHY 

1.1 Proprioception  in patients with rotator cuff tendinopathy 

 

The first aim of this thesis was to further investigate the role of proprioception in patients with 

rotator cuff tendinopathy. (Chapter 1) 

Dysfunction of motor control in patients with rotator cuff tendinopathy is obvious. A change in 

kinematics of the scapulothoracic and glenohumeral joint and a change in muscle activity 

patterns and muscle force balance compared with healthy subjects supports this strongly.54;64 

Proprioception forms the basis to make every movement we perform accurate and successful. In 

patients with rotator cuff tendinopathy deficient kinesthesia and joint position sense were 

determined previously.1;42;58 The third modality of proprioception, force sensation, was 

investigated for the first time in our study presented in chapter 1. 

 

Thirty-six patients clinically diagnosed with rotator cuff tendinopathy and 30 healthy subjects 

performed an internal and external rotation force reproduction test in which they were asked to 

reproduce a target as accurate as possible. Surprisingly, no difference between patients and 

healthy subjects for relative error (magnitude of error relative to the target) and coefficient of 

variance (smoothness of produced force) was shown. This implies that despite the presence of 

shoulder pathology, patients were capable of accurately exerting force aiming at a set target 

force and to do this with a smooth contraction without many fluctuations. Constant error 

(magnitude of error accounting for direction of error) however differed between groups. 

Patients with rotator cuff tendinopathy overestimated the target while healthy subjects 

underestimated the target. As overshooting a target was shown previously after experimentally 

induced pain, muscle fatigue and muscle damage, it is possible that this finding is the result of 

rotator cuff tendinopathy.10;29;71;72 Rehabilitation programs should take this into account. 

Implications of this study could be sought in dosing of rotator cuff strength training exercises in 

patients with impingement. Possibly internal and external rotation strength training should not 

be dosed maximally but slightly below the maximum as it was seen that patients overshoot the 

force needed to perform the task. Moreover, physiotherapists should pay attention to 

compensatory strategies which might be an expression of overshooting. A possible 

compensatory strategy might be the preferred use of global muscles like the pectoralis major and 

latissimus dorsi, instead of local rotator cuff muscles because of pain. This change in muscle 

recruitment strategy from the use of local to global muscles was previously shown in patients 
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with other musculoskeletal complaints like low back pain and is thought to occur as a result of 

pain inhibition.  

 

1.2 Acromiohumeral distance in overhead athletes 

 

Overhead athletes often suffer from shoulder pain as a result of rotator cuff tendinopathy. 

Repetitive impingement of the rotator cuff tendons during overhead throwing is believed to be 

the main trigger for rotator cuff tendinopathy in this population. When the shoulder muscles 

become fatigued, like for example after a long tennis game, shoulder kinematics change and this 

is hypothesized to further contribute to subacromial impingement. Moreover, certain shoulder 

adaptations, like glenohumeral internal rotation loss, are clinically believed to have a decreasing 

effect on the subacromial space. Though these clinical assumptions are plausible, too little 

research is available to provide evidence based support. 

 

Therefore, the second aim of this dissertation was to increase understanding of the size and 

behavior of the subacromial space in an overhead athlete population.(Chapter 2, 3 and 4) 

Subacromial space was imaged with ultrasound. The acromiohumeral distance (AHD) (shortest 

distance from the most inferolateral part of the acromion to the humeral head) was used as a 2-

dimensional measure for subacromial space.(Figure 1) In agreement with previous studies20;56 

good test-retest reliability of this measurement was shown which supports the use of this 

technique to quantify the subacromial space.(Chapter 2) 

 

 

Figure 1. Acromiohumeral distance measurement: subject positioning  and probe placement 

(left) and landmarks of acromiohumeral distance (right) 
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Three questions were addressed to provide information on the influence of training, the influence 

of overhead throwing fatigue and the influence of posterior shoulder tightness on the AHD: 

 

1.2.1 What is the influence of training on the AHD in overhead athletes?  (Chapter 2) 

The results of the second study of this dissertation indicated that the AHD is larger at the 

dominant compared with the non-dominant side in female overhead athletes. This applies to 

both the elite and recreational athletes. When comparing female elite and recreational athletes, 

it was shown that the AHD is even larger in elite compared with recreational athletes .  

Only two other studies compared the AHD between dominant and non-dominant limbs. Leong et 

al. also demonstrated a larger acromion-greater tuberosity distance at the dominant side in 

volleyball players but also in non-athletes.38 In contrast, Cholewinski et al. found no difference for 

the acromion-greater tuberosity distance between limbs in a healthy non-athletic population.13 

The group of Cholewinski et al. was older (mean 57 years) than the group of Leong et al. (mean 22 

years). This brings to mind  that a higher general daily physical activity level could be associated 

with a larger AHD. This hypothesis is also supported by our finding that the AHD was larger in 

elite female handball players, who performed significantly more hours of sports per week 

compared with recreational female athletes.  

Three previous studies compared athletes with non-athletes. Wang et al. found a larger AHD in 

elite college baseball players compared with controls.70 Leong et al. also showed a trend for 

larger acromion-greater tuberosity distance in volleyball players compared with non-athletes.38 

This further supports the hypothesis that a higher physical activity level is associated with a larger 

AHD. Silva et al. on the other hand, found a smaller AHD in their tennis players compared with 

non-athletes.63 It could have played a role that they performed measurements with the forearm 

pronated and the shoulder internally rotated.  

 

The results of our study confirmed that the AHD reduces significantly from 0° to 45° abduction 

and from 45° to 60° of abduction. This is in agreement with the results of Desmeules et al20 and 

Silva et al63. The amount of reduction of the AHD relative to the initial AHD, was not 

significantly different between the dominant and non-dominant side. Comparing the amount 

of reduction of the AHD between elite and recreational athletes revealed significantly less 

reduction in elite athletes  when abducting the arm from neutral to 45° of abduction. Silva et al. 

showed more reduction in tennis players with scapular dyskinesia compared with tennis players 

without dyskinesia.63 A trend for more reduction of the AHD during abduction from 0° to 45° was 

also observed in patients with subacromial impingement compared with a healthy population.20 
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Implications from this study should be formulated with caution as no longitudinal research was 

performed. A larger AHD at the dominant side compared with the non-dominant side, a larger 

AHD in athletes compared with controls and in elite athletes compared with recreational 

athletes, supports the idea that the AHD could be related to physical activity level. From results 

of previous studies in patients with rotator cuff pathology and athletes with scapular dyskinesis it 

appears that having less reduction during abduction is a positive finding.20;63 Whether the larger 

AHD at the dominant side occurs due to adaptation to overhead sports activities and general 

activity level, or is rather inherent and the reason why they are uninjured athletes, remains 

unclear.  Moreover it remains unclear how this is related to rotator cuff tendon thickness. A 

thicker tendon at the dominant side might offset the advantage of a larger AHD. Our findings 

may not yet be applied to male overhead athletes as our group consisted of only female athletes. 

 

1.2.2 What is the influence of overhead throwing shoulder fatigue on the AHD? 

(Chapter 3) 

The shoulder relies very much on the muscles surrounding it for proper kinematics. The scapular 

muscles, mainly the trapezius and the serratus anterior, play an important role in moving the 

scapula towards upward rotation, posterior tilt and external rotation during abduction.4;27 This is 

crucial to lift the acromion and to avoid impingement.35 On the other hand, the rotator cuff 

muscles play an important role to resist the superior pull of the deltoid onto the humeral head.55 

This is in turn believed to avoid impingement of the subacromial structures. When these muscles 

are fatigued from overhead sports activities it is plausible that this may have an influence on the 

AHD.12;14;15;21;22;44;65 Therefore, a study was performed in which 29 overhead athletes were 

fatigued with an exercise that resembles an overhead throwing motion.(Figure 3) 

 

  

Figure 3. Shoulder muscle fatiguing protocol 
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This study showed that despite to what is intuitively believed, the AHD becomes larger after a 

shoulder muscle fatigue protocol when the arm is actively held at 45° and 60° of abduction. 

At the same positions, the scapula was in a significantly more upwardly rotated, posteriorly tilted 

and externally rotated position after fatigue. As these directions are believed to enlarge the 

subacromial space2;62, the increased AHD found after fatigue probably relates to the scapular 

position alterations found. This implies that humeral translation either didn’t change or didn’t 

change enough in an upward direction to decrease the subacromial space.  

 

These observed changes could reflect a compensatory strategy with increased scapular motion 

relative to glenohumeral motion during active abduction to compensate for the fatigued 

glenohumeral muscles. The results of this study raise doubt as to whether shoulder fatigue is 

associated with development of subacromial impingement of the rotator cuff in overhead 

athletes. Though maybe shoulder fatigue, as a result of overhead throwing might not give rise to 

subacromial impingement, it might still be related to rotator cuff tendinopathy by inducing 

overload of the tendons and initiating intratendinous degeneration. 

 

As to rehabilitation of overhead athletes with impingement, the results of this study might 

indicate that the use of our overhead throwing exercise with an XCO-trainer® could be 

appropriate for early functional return-to-sports training. This exercise is currently used in 

practice mainly at end stage rehabilitation. Moreover, one might infer from the results that 

shoulder muscle endurance training in this position should not be feared in patients with 

subacromial impingement. Then again, physiotherapists should pay attention to the direction of 

scapular compensation during this exercise as it is possible that the shoulder reacts differently in 

the presence of pain. 

 

1.2.3 What is the influence of posterior shoulder tightness on the AHD? (Chapter 4)  

Glenohumeral internal rotation deficit (GIRD) was shown by Wilk et al. to be a risk factor for 

shoulder injuries in overhead athletes.73 GIRD is thought to at least partially result from posterior 

shoulder tightness.48;68;69 Increased superior and anterior humeral head translation was shown in 

cadavers with a tightened posterior capsule.24 Scapular kinematics have also shown to be altered 

in the presence of GIRD but the direction of these changes (decreased or increased) remains 

unclear due to inconsistent results.7;36;66;67  

From our study presented in chapter 4 it appeared that the AHD was smaller at rest and at 45° 

and 60° active abduction at the dominant side of healthy overhead athletes with GIRD of more 

than 15° compared with the non-dominant side. Though differences were small, they might 
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relate to a change of subacromial pressure in the presence of posterior shoulder tightness, as was 

previously shown by Muraki et al.45;46 The implication from this study is that GIRD is associated 

with a minimally smaller AHD compared with the contralateral side. This strengthens the belief 

that GIRD could give rise to subacromial impingement and hence rotator cuff tendinopathy. 

However, it remains unclear if this smaller AHD at the dominant side in athletes with GIRD is 

associated with a higher risk for rotator cuff tendinopathy caused by subacromial impingement. 

 

 

PART II. CONSERVATIVE TREATMENT OF PATIENTS WITH ROTATOR CUFF 

TENDINOPATHY 

1.3 Posterior shoulder stretching in overhead athletes 

 

Both healthy overhead athletes and subjects with rotator cuff tendinopathy associated with 

subacromial impingement have been shown to regularly suffer from posterior shoulder tightness 

and GIRD. Stretching the posterior shoulder to restore internal rotation ROM is suggested in 

management of subacromial impingement in overhead athletes. Moreover, stretching has been 

recommended to prevent shoulder injuries in overhead athletes and enhance sports 

performance. It is not clear if stretching also affects glenohumeral and scapular kinematics and 

therefore if this would alter the size of the subacromial space. We investigated the change of 

AHD after a 6 week sleeper stretch program in healthy overhead athletes. 

 

It is striking that after performing the sleeper stretch (Figure 2) at the dominant side daily for 6 

weeks, the AHD at rest and at 45° and 60° active abduction significantly increased. No change in 

AHD was seen at the non-dominant side of the stretch group and at both sides of the control 

group after 6 weeks.  

 

 

Figure 2. Sleeper stretch 
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From this study we can infer that GIRD can be reduced by a 6 week sleeper stretch program and 

this reduction is associated with an increase of the AHD. If the amount of increase of the AHD 

after stretching is enough to diminish the risk for impingement cannot be decided based on the 

results of our study. The use of the sleeper stretch in healthy athletes to oppose the loss of 

internal rotation range of motion as an adaptation to overhead throwing and to preserve the 

available subacromial space is supported by the results of this study. Furthermore, the use of the 

sleeper stretch in patients with subacromial impingement should be promoted to decrease 

posterior shoulder tightness and increase the subacromial space.  

 

1.4 Scapular muscle balance training: which exercises to prescribe? 

 

The study in chapter 5 wanted to answer the question: “Which variations of the knee push up plus 

are appropriate for restoring UT/SA balance and how is scapular muscle activity affected by the 

kinetic chain during the knee push up plus exercise?” 

  

Patients with subacromial impingement have shown decreased EMG activity of the serratus 

anterior (SA) muscle and increased EMG activity of the upper trapezius (UT) muscle.39;54 The 

challenge is to find exercises with high SA activity opposed to low UT activity in order to restore 

this scapular muscle imbalance.  

Ludewig et al. have shown previously that UT/SA was low during standard push up plus and KPP 

exercises.40 We investigated scapular muscle EMG activity during the KPP and 6 variations in 32 

healthy subjects.(Figure 4) 

 

  

Figure 4. Six variations on the knee push up plus exercise 
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Based on the results of this study, four exercises with low UT/SA (between 0.40 and 0.54) can be 

selected for rehabilitation of intermuscular balance in patients with subacromial impingement:  

1. Standard KPP 

2. KPP with homolateral leg extension 

3. KPP with homolateral leg extension on a wobble board 

4. One-handed KPP 

These exercises all require twice as much activity of the SA compared with the UT and are 

therefore suitable for patients with subacromial impingement. The KPP with homolateral leg 

extension (Figure 5, exercise 3)  showed the highest mean SA EMG activity in combination with 

the lowest UT/SA ratio.  

KPP with heterolateral leg extension without and with a wobble board  (Figure 5, exercises 2 and 

5) were the only exercises in which UT/SA was not favorable (UT/SA 1.00 and 1.56 respectively). 

These exercises should therefore not be used to restore UT/SA balance. 

 

During both daily and sports activities the shoulder doesn’t move in isolation but cooperates with 

the trunk and lower limbs in specific movement patterns.43 In shoulder exercise therapy leg 

extension is often incorporated to simulate these patterns and to train the shoulder muscles to 

work together with trunk and lower limb muscles.  As discussed above, KPP with homolateral leg 

extension required the highest SA activity. Muscle chains have been described by Myers et al. 

and Porterfield and DeRosa.49;57 The SA is believed to be part of the anterior flexion chain. This 

chain runs from the heterolateral hip flexion musculature, through the heterolateral internal 

oblique abdominals and homolateral external oblique abdominals to the SA. Muscle fibers of all 

muscles in this chain are in line with each other. When the homolateral leg is extended, the 

heterolateral leg should bear more weight which likely requires higher stabilizing hip flexion 

muscle activity. In this view the anterior flexion chain supports the higher SA activity observed in 

this study. 

In contrast, KPP with heterolateral leg extension without and with a wobble board required the 

lowest SA activity. Extending the heterolateral leg requires hip extension muscle activity and 

inhibits the antagonistic hip flexion musculature. This might disrupt the anterior flexion chain 

resulting in the observed low SA muscle activity. 

The opposite was shown for lower trapezius (LT) activity. This was generally low in all KPP 

variations so these exercises are not appropriate for strengthening LT. Strikingly, the KPP 

exercises with heterolateral leg extension showed the highest LT activity. Extending the 

heterolateral leg requires gluteus maximus activity. This muscle is part of the posterior extension 
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chain which runs from gluteus maximus to the thoracolumbar fascia and to the heterolaterale LT. 

Like this, heterolateral hip extension could have facilitated the observed increase of LT activity. 

This has some interesting implications for stabilization training in patients with shoulder 

instability related pathology. Closed chain exercises are prized because they are believed to 

enhance cocontraction of the rotator cuff which stabilize the glenohumeral joint. When 

physiotherapists aim to facilitate the LT, the heterolateral leg should be extended. When stability 

training in combination with SA activity is preferred, homolateral leg extension might be 

superior.  

1.5 Eccentric training in patients with rotator cuff tendinopathy 

 

The study presented in chapter 6 was designed to determine the effect of physiotherapy 

combined with rotator cuff home training and the superior value of adding a heavy load eccentric 

home training program. 

Previous studies had shown good results with eccentric training in patients with subacromial 

impingement.6;11;30 Due to the absence of a control group, it remained unclear if eccentric training 

would augment efficacy of current techniques in conservative rehabilitation.  

Sixty-one patients were included in our study and randomly allocated to the TT (traditional 

rotator cuff strength training) group or the TT+ET (traditional rotator cuff strength training + 

eccentric training) group. The TT group performed an internal and external rotation exercise with 

a rubber band once a day. The TT+ET group performed the same exercises added with heavy load 

eccentric full can scapular abduction (Figure 5). All exercises were performed at home for 12 

weeks. Meanwhile, patients attended 9 physiotherapy treatment sessions.  

 

 

Figure 5. Eccentric exercise program for patients with rotator cuff tendinopathy 

 

 

In agreement with previous studies, pain was shown to be significantly decreased and shoulder 

function improved in the group that performed the eccentric training program (TT+ET group). 
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Compared with the TT group that only performed traditional rotator cuff training, outcome was 

equally good concerning pain and shoulder function. 

In both groups isometric shoulder force was also shown to be increased. The increase of 

isometric force to abduction at 90° scapular abduction was significantly larger in the TT+ET 

group. The TT group showed no significant increase of abduction force at this position. As Kelly 

et al34 showed that at 90° scapular abduction contribution of the supraspinatus is larger than that 

of the agonists, it is possible that better function of supraspinatus muscle and tendon was 

present in the TT+ET group compared with the TT group. Perhaps eccentric training should not 

be performed to improve clinical symptoms in patients with rotator cuff tendinopathy associated 

with subacromial impingement, but to improve supraspinatus function and increase tendon 

strength.  

Jonsson et al30 and Bernhardsson et al6 did not evaluate shoulder force after eccentric training. 

Camargo et al11 tested isokinetic abduction force after their isokinetic eccentric training program 

without additional treatment and showed small significant changes in peak torque, total work 

and acceleration time. The effect sizes of the significantly increased isokinetic peak torque in the 

study of Camargo et al. (Cohen’s d=0.18-0.22) were generally much lower than the effect sizes of 

the significantly increased isometric peak torques in the TT+ET group of this study (Cohen’s d= 

0.85-6.15). This might mean that to increase shoulder force, performing an eccentric training 

program in addition to a general rehabilitation program (physiotherapy treatment + rotator cuff 

training) is superior to an isolated eccentric training program. The relation between the rotator 

cuff and the shoulder joint is different from that between for example the patella tendon and the 

knee joint because of the tunnel through which the rotator cuff tendons pass. Results on 

eccentric training of lower limb studies cannot be simply transferred to the rotator cuff. A proper 

rehabilitation program should address both extrinsic factors related to subacromial impingement 

and intrinsic factors related to tendon degeneration. Like this physiotherapists should aim to 

increase the subacromial space and simultaneously make the tendons stronger and less prone to 

degeneration.  

The results of our study showed excellent results of home training combined with a minimal 

amount of physiotherapy treatment sessions. This concept in which the vital role of a 

physiotherapist is to give professional advice, follow up progress and fine-tune the training 

program while the patient takes equal responsibility by performing the exercises to the best, is 

very attractive in  view of augmenting the efficiency of physiotherapy and lowering heath care 

costs. Based on our study we can state that patients with impingement should expect most 

improvement of pain, function and strength within 6 weeks.  
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2. STRENGTHS AND LIMITATIONS OF THE THESIS 

 

This dissertation entails both strengths and limitations which are important to allow considerate 

interpretation. This section looks at issues with measurement techniques that were chosen, the 

ability or inability to define underlying mechanisms of the results and the causal relation of the 

results of our studies. 

 

2.1 Measurement techniques 

 

Measurement techniques that were chosen to investigate and answer the research questions of 

this dissertation bring about some strengths but also limitations. In particular, ultrasound 

imaging, surface EMG and electromagnetic motion tracking with skin base receivers are 

discussed in this part. 

 

To evaluate the subacromial space, ultrasound imaging was chosen in chapter 2, 3 and 4. A 

limitation of this imaging technique is that it is 2-dimensional and does not take into account 

what may occur at other aspects or volume of the subacromial space. Previous studies using 

radiography to investigate the subacromial space however have shown concurrent validity of 

ultrasound imaging.3 Radiography has in turn demonstrated a high correlation with MRI 

measures of the subacromial space.59  

The advantages offered by ultrasound imaging, namely that it is safe, easy to use, portable, 

relatively low-priced and more accessible than for example MRI and radiography, make it 

preferable over other imaging techniques.32 In addition, it is suitable for examining tissues both 

statically and dynamically with the individual in various positions.9 Tissues can be examined while 

subjects are seated, which allows the shoulder and especially the scapula to move free in space in 

contrast to a supine position.  

It must be noted that imaging the subacromial space with ultrasound during abduction is limited 

to 60° because of acoustic shadowing from the bony acromion beyond 60°.20 The rotator cuff 

tendons have then rotated medially under the acromion and can no longer be visualized in most 

subjects. Ultrasonographic measurement of the AHD beyond 60° abduction would then no 

longer be relevant. Graichen et al. did show that the minimal AHD passes right through the 

supraspinatus tendon at 30° and 60° of abduction in contrast to the minimal AHD at 90° of 

abduction that is located laterally of the supraspinatus.23 This supports the relevance of 

measuring the AHD between 0° and 60° of abduction. 
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To standardize these abduction angles and to make sure that the subjects did not lower the arm 

during measurements a belt was used as previously described in a study of Desmeules et al.20 

Verbal instructions to not pull on the belt were explicitly given to the subjects. Moreover it was 

visually controlled that the belt was not pressed into the soft tissues of the lower arm resulting 

from abduction or external rotation contraction during measurement.  

 

To monitor 3-dimensional scapular motion in the study presented in chapter 3, the Fastrak 

electromagnetic motion tracking device with skin base receivers was used. In order to completely 

describe scapular motion, the use of 3-dimensional measurement technique is preferable over 2-

dimensional clinical measurements often used in literature.39;41;50  

As we used the non-invasive surface acromial method to register scapular position, skin motion 

artifacts may have occurred. However, Karduna et al. validated the surface acromial method with 

the bone based technique with pins into the scapula and concluded that this method is well 

suited for capturing the essence of motion patterns, especially below 120°.33 As our maximal 

abduction degree was 60°, it is likely that there was not much skin displacement. ISB 

recommendations for bony landmarks, local coordinate systems and Eular angle sequence were 

used to standardize the measurement protocol.75 

Because of the large amount of interindividual variability in scapular position we did not use 

mean absolute position of the scapula to investigate the influence of fatigue. The mean of this 

absolute position would represent a subject that doesn’t exist and is not relevant. Instead, we 

used the amount of change of motion around the 3 axes before and after fatigue.  

 

In Chapter 5 surface EMG was used to examine scapular muscle activity during the KPP and 

variations. EMG involves recording the action potentials that activate skeletal muscle fibers. 

Although this technique provides valuable information regarding muscle activity, some 

limitations must be understood for proper interpretation.  

First, recorded muscle activity may not represent activity of the entire muscle. The electrodes on 

the skin surface only detect the electrical current of the muscle fibers within the pick-up area of 

the electrodes.5 On the other hand, neighboring muscles may produce a significant amount of 

EMG activity that is detected by the local electrodes, which is called cross-talk.74 Given that the 

electrodes were not displaced during the study protocol, detected differences between our 

exercises are not influenced by a different detection area.  

Second, an inherent problem of surface EMG with dynamic investigations is the change of 

distance between the signal origin site and the signal detecting electrode because of skin 

displacement. This could have influenced the EMG signal. Fine wire EMG overcomes this 

problem. However, fine wire EMG measures a rather small selection of muscle fibers EMG while 



 

 

SCS General Discussion 

surface EMG is believed to provide a more global impression when examining large muscle 

groups such as the trapezius and serratus anterior.18 Precautions were taken by following 

SENIAM prescriptions for electrode placement, electrode spacing and skin preparation.25 In 

addition, recommendations of previous investigations that used surface EMG to analyze scapular 

muscle activity were respected.16;19;37;40 

 

 

2.2 Underlying mechanisms? 

 

The studies of this thesis should be seen as first steps in certain directions which need further 

elaboration. Several interesting findings have been observed, but the underlying mechanisms 

remain hypothetical. This restriction comes along with the choice of measurement techniques 

and the study design in some of our investigations. 

In the studies of chapter 2 and 4, the findings on AHD cannot be assigned to an altered scapular 

or humeral head position. This is precisely the strength of chapter 3 as we included 3-dimensional 

scapular position measurement in this study to monitor the changes and link them afterwards to 

the changes of the AHD.  

In chapter 1 the underlying mechanism of altered force sensation is also not clear. Force 

sensation results from a combination of peripheral sensation of tension and central sensation of 

effort.28 However, these aspects are rather difficult to objectify. 

 

When discussing the results of the study in chapter 5, the theory of muscle chains is applied to the 

KPP exercises and fits perfectly well with the muscle activity observed.49;57 It should be noted 

however that we could not assure that this theory provides the underlying mechanism for 

increased SA activity when the homolateral leg is extended and increased LT activity when the 

heterolateral leg is extended. Muscle activity was not evaluated over this whole muscle chain. 

 

Finally, the underlying mechanism for the results of the study in chapter 6 needs some 

consideration. As a first step to investigate the effect of adding an eccentric training program to 

conservative rehabilitation it is important to evaluate clinical outcome like pain, function and 

force. We showed a higher strength gain to abduction at 90° abduction in our eccentric training 

group. We cannot yet ascribe this to the supraspinatus as we are not in possession of such data. 

Neither can we rule on the impact of eccentric training on supraspinatus muscle structure and 

biology (e.g. fatty degeneration, cross-sectional area) and rotator cuff tendon healing (e.g. 

collagen type and orientation, neovascularization). These aspects have been related to the 

success of eccentric training previously in patients with Achilles tendinopathy.51;52  
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2.3 Cause or consequence?  

 

To decide upon cause and consequence, a longitudinal prospective follow-up study design is 

needed. Our studies enhance understanding of associations but up to now we are unable to 

formulate conclusions about the cause-consequence relation of the findings. 

In healthy female overhead athletes it was shown that the AHD is larger on the dominant side 

and even larger in elite female athletes.(Chapter 2) Possibly this is the consequence of adaptation 

of the dominant side to a combination of daily and sports activity demands onto the shoulder. 

The more hours training a week and the higher the level of competition, the more the shoulder 

adapts to these activities. However, observation of adaptations in the shoulders of healthy 

overhead athletes varies widely. Some identified adaptations that might indeed increase the 

AHD17;47, while others found adaptations that might decrease the AHD8;38;53. In addition, no 

information was obtained on the presence of adaptations in our subjects.  

On the other hand, the finding of a larger AHD in our study might not be the consequence of 

adaptation but rather the reason why they are injury free athletes. Similarly, the larger AHD 

could be partly the reason why the elite athletes are successful at this high competition level. This 

would imply that having a larger AHD would be associated with a lower risk for injury and better 

performance level. Based on our study we cannot define this causal relation. 

 

To get a better idea of the relation between shoulder adaptations in overhead athletes we 

performed a second study in athletes that were selected based on a 15° of more internal rotation 

deficit.(Chapter 4) It was shown that the athletes with glenohumeral internal rotation loss 

displayed a smaller AHD at the dominant side. Based on these finding we can only ascertain an 

association between internal rotation loss and a smaller AHD at the dominant side. However, this 

was overcome to some degree by showing a change after performing the sleeper stretch. This 

strengthens the belief that the internal rotation loss was at least partly the cause for the 

decreased AHD. 

 

The same remark should be made for the observation that patients with subacromial 

impingement overestimate force during internal and external rotation force reproduction 

tests.(Chapter 1) It is not clear yet if this is the cause or the consequence of rotator cuff 

tendinopathy. The rotator cuff muscles which were the subject of our testing protocols show a lot 

of functional and structural changes in patients with rotator cuff tendinopathy. A reduction in size 

and number of muscle spindles and Golgi tendon organ was demonstrated previously after injury 

and disuse.31;60 In this view, our findings could have been the consequence of rotator cuff 

pathology. 
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Alternatively, altered force sensation could have been the cause of rotator cuff tendinopathy or 

could have sustained the pathologic process in our subjects. When the amount of force used 

during daily activities is higher than needed, this could relate to overuse of the rotator cuff. 

Furthermore, using too much force might alter glenohumeral or scapulothoracic kinematics and 

compromise the subacromial space.  
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3. DIRECTIONS FOR FUTURE RESEARCH 

3.1 Proprioception in patients with rotator cuff tendinopathy 

 

The results of our study in chapter 1 indicated overestimation but preserved control of force in 

patients with rotator cuff tendinopathy. Besides isometric external and internal rotation force 

reproduction, concentric and eccentric external and internal rotation force reproduction should 

be investigated in patients with rotator cuff tendinopathy. Hortobagyi et al. have shown deficient 

accuracy and steadiness of eccentric and concentric force rather than isometric force in patients 

with knee osteoarthrosis.26 Adequate control of these dynamic submaximal muscle forces is 

especially important in activities of daily living. 

Another interesting direction for research is the influence of physical therapy rehabilitation on 

proprioception. This could enhance understanding the role of proprioception in patients with 

rotator cuff tendinopathy. In clinical practice specific proprioception training, including for 

example position-reposition, mirroring arm movement and force reproduction exercises, is 

predominantly used in rehabilitation of patients with shoulder instability related pathology. It is 

not clear whether proprioception training would offer added value in patients with rotator cuff 

tendinopathy. Therefore, an important question that needs to be answered is: 

• What is the impact of a multimodal rehabilitation program with and without specific 

proprioception training in patients with rotator cuff tendinopathy on the three 

submodalities of proprioception? 

 

 

3.2 Acromiohumeral distance  in overhead athletes  

 

In a first study (chapter 2) we showed that the AHD was larger at the dominant side compared 

with the non-dominant side and in elite compared with recreational female athletes. Additional 

research is needed in male overhead athletes and in other sports disciplines to determine if these 

results can be applied across gender and sports discipline. Future studies should also identify if a 

correlation exists between general activity level and size of the subacromial space. 

Together with the studies of Silva et al63 and Leong et al38, the findings of our study (chapter 4) 

support the belief that shoulder adaptations (scapular dyskinesis, decreased ER/IR ratio and 

GIRD) could be related to narrowing of the subacromial space and ultimately subacromial 

impingement. Prospective studies in overhead athletes are needed to answer the following 

questions: 
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• What is the incidence of subacromial impingement related pathology in overhead 

athletes with and without marked scapular dyskinesis, decreased ER/IR ratio or GIRD?  

• What is the change of incidence of impingement related pathology in athletes, 

included in a prevention program comprised of scapular stabilization exercises, 

external rotator strengthening exercises and/or posterior shoulder stretching?   

These studies will provide insight into the relation between these adaptations and the risk for 

impingement and between prevention programs and a reduced risk. 

 

 

3.3 Scapular muscle  balance training 

 

We selected 4 variations of the KPP exercise with a low UT/SA which are appropriate for restoring 

scapular muscle balance in patients with subacromial impingement. Cools et al. previously 

reported a selection of 4 exercises with low UT/MT and UT/LT.(COOLSetal)  Research regarding 

the effect of these exercises in patients with subacromial impingement should be the next step. 

Balance between UT and SA, MT and LT muscle activity before and after this exercise program is 

specifically of interest. Moreover, the impact of any change of scapular muscle balance on 

scapular kinematics and ultimately on the size of the subacromial space should be determined as 

this is the clinical rationale for including these exercises in rehabilitation. In conclusion, future 

studies should answer the following question: 

• What is the effect of a scapular exercise program in patients with subacromial 

impingement related rotator cuff tendinopathy on pain and function, scapular inter- 

and intramuscular balance, scapular kinematics and the size of the subacromial space? 

 

 

3.4 Eccentric training  

 

Jonsson et al. were the first to investigate the effect of an eccentric training program in patients 

with subacromial impingement.30 Bernhardsson et al. and Camargo et al. performed similar 

studies but with varying eccentric exercises.6;11 We were the first to investigate conservative 

rehabilitation with and without eccentric training in patients with subacromial impingement and 

rotator cuff tendinopathy. Although eccentric training resulted in higher strength gain, there 

were no significantly better results for pain and shoulder function. It is notable that some of our 

subjects subjectively felt decreasing pain immediately throughout performing an eccentric 

exercise while some did not report this feeling. This strengthened our clinical belief in the value of 



 
SCL General Discussion 

heavy load eccentric training. In future studies subjects with rotator cuff tendinopathy should be 

divided into two groups, based on the causing mechanism (either dominant extrinsic subacromial 

impingement or dominant intrinsic tendon degeneration) as proposed by Seitz et al.61 It is 

plausible that patients with a dominant intrinsic degeneration mechanism are better served with 

eccentric training than patients with a dominant extrinsic compression mechanism.  

 

The clinical rationale for applying eccentric training in patients with tendinopathy is to oppose an 

appropriate load onto the tendon to pursue tendon healing and strengthening. In this view, a 

future study should include other outcome measures related to rotator cuff tendon healing, like 

for example tendon thickness and vascularity. A long term follow-up moment should be added to 

investigate whether eccentric training can decrease recurrence rates of rotator cuff tendinopathy 

complaints.  
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4. CONCLUSIONS FOR CLINICAL PRACTICE 

 

Rotator cuff tendinopathy is a very common shoulder pathology in overhead athletes. 

Subacromial impingement is believed to be an important mechanism causing this tendinopathy. 

Our findings on AHD, a measure for the size of the subacromial space, in overhead athletes 

should be added to the findings of Silva et al. and Leong et al. as schematically presented in 

figure 6.38;63  

 

We showed that the AHD at the dominant side of female overhead athletes is larger than at the 

non-dominant side and larger in higher level athletes compared with recreational athletes. A 

relation with physical activity demands on the shoulder is plausible.  

Moreover, we observed that after overhead throwing fatigue in healthy overhead athletes, the 

scapula compensates to preserve the AHD. However, the presence of pronounced dominant 

shoulder adaptations in overhead athletes, like the loss of internal rotation range of motion, 

scapular dyskinesis and rotator cuff muscle imbalance with a lower external  to internal rotation 

force ratio (ER/IR), negatively influences the AHD. We showed that internal rotation loss is 

combined with a smaller AHD at the dominant side. However, this seems to be reversible as we 

observed that the AHD increases after a sleeper stretch program. Silva et al. showed more 

reduction of the AHD when marked scapular dyskinesis is present.63 Leong et al. showed a 

positive correlation between AHD and external rotation force and between AHD and ER/IR with 

smaller AHD in the presence of lower external rotation force and lower ER/IR ratio.38  

  

 

 

 

 

 

 

 

Figure 6. Size and behavior of the acromiohumeral distance in overhead athletes and the 

relation with sports specific shoulder adaptations 
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Based on these results we can suggest that a good shoulder injury prevention program in 

overhead athletes should entail: 

• Scapular orientation exercises 

• Scapular strengthening exercises focused at lower trapezius and serratus anterior 

• External rotation strengthening 

• Posterior shoulder stretching by use of for example the sleeper stretch.  

 

As to patients with rotator cuff tendinopathy, we can recommend that proper rehabilitation 

should incorporate eccentric training into a multimodal approach addressing all factors 

associated with narrowing of the subacromial space. A limited amount of physiotherapy sessions 

should, depending on each individual patient, focus on: 

• Providing the patient with information  

• Correcting forward head and rounded shoulder posture 

• Correcting scapular position and motion 

• Stretching the posterior shoulder soft tissues 

• Improving articular hypomobility 

• Establishing a home exercise program 

The home exercise program should entail rotator cuff exercises as a core.(Chapter 6) We showed 

that physiotherapy combined with rotator cuff strengthening decreases pain, improves function 

and increases strength. Physiotherapists should pay attention to proper performance of these 

exercises. We found that patients overestimate internal and external rotation force.(Chapter 1) 

We should be aware of this fact when dosing the exercises and guarantee the use of the intended 

muscles, the rotator cuff muscles, with the opposed load. It could be interesting to improve 

appreciation of the exerted muscle force in advance through exercises like for example to 

contract up to the maximum in 4 seconds and gradually release, to contract maximally and 

contract with half of this effort or a quarter of this effort,… 

When the scapula is involved in pathology, scapular strengthening exercises should be 

performed. Four exercises can be selected based on our study (Chapter 5) with low UT/SA: 

standard KPP, KPP with homolateral leg extension with and without a wobble board and one-

handed KPP. When complaints are associated with minor instability, these exercises can also be 

used for closed chain shoulder stability training. When lower trapezius muscle activity is 

intended, the heterolateral leg should be extended and when serratus anterior activity  is 

intended, the homolateral leg should be extended during KPP. 

In case the posterior shoulder soft tissues are shortened, these should be stretched by use of for 

example the sleeper stretch.(Chapter 4) Performing this stretch might decrease subacromial 

pressure in the affected shoulder. 
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The superior value of adding a heavy load eccentric training lies in a higher increase of 

abduction strength at 90° abduction.(Chapter 6) Adding eccentric training may not  be superior 

to reduce symptoms but may improve supraspinatus function and tendon degeneration.(Chapter 

6) Physiotherapists should not fear for increased pain by eccentric training. Our dosing method, 

based on the pain monitoring model, proved very useful for patients to monitor the eccentric 

exercises at home.  

Finally sports specific exercises should be integrated when rehabilitating an overhead athlete. 

Plyometric internal and external rotation at 90° abduction using an XCO-trainer® might be an 

appropriate exercise as it requires acceleration of the internal rotators and deceleration of the 

external rotators similar to an overhead throwing motion.(Chapter 3)  

Physiotherapists must be aware that the largest progression should be expected within the first 6 

weeks of treatment. In appendix a concrete protocol for physiotherapy rehabilitation in patients 

with rotator cuff tendinopathy and associated subacromial impingement can be found with 

practical examples.  
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SJL Summary 

Due to the high prevalence, shoulder pain is a relevant problem in health care. Rotator cuff 

tendinopathy is frequently the cause and it is thought to be induced by subacromial impingement 

because of narrowing of the subacromial space. Proper rehabilitation requires full understanding 

of mechanisms associated with rotator cuff tendinopathy.  

 

The first aim of this thesis was to further explore the role of proprioception in patients with 

rotator cuff tendinopathy. Proprioception forms the basis to make every movement we perform 

accurate and successful. In patients with rotator cuff tendinopathy deficient kinesthesia and joint 

position sense were determined previously. We investigated the third modality, force sensation, 

and found preserved control but overestimation of internal and external rotation force in patients 

with rotator cuff tendinopathy.  

 

Overhead athletes regularly suffer from shoulder pain as a result of rotator cuff tendinopathy and 

are therefore an interesting population to study. Repetitive impingement of the rotator cuff 

tendons during overhead throwing is believed to be the main trigger for rotator cuff 

tendinopathy in this population. The second aim of this thesis was to investigate the 

acromiohumeral distance (AHD, from the acromion to the humeral head), a 2-dimensional 

measure for subacromial space and it’s behavior in overhead athletes. First, the influence of 

training was of interest. A larger distance was found at the dominant compared with the non-

dominant side and in elite compared with recreational athletes.This might indicate that the 

subacromial space size is related to physical activity level. Second, the influence of shoulder 

muscle fatigue on the AHD was investigated. Functional muscle fatigue induced by overhead 

throwing was postulated to play a role in development of subacromial impingement. The 

shoulder joint obtains very little stability from passive structures like the capsule and the 

ligaments. Hence, mainly shoulder muscles are responsible for optimizing kinematics. We 

showed that after overhead throwing fatigue, the scapula compensates and moves to a more 

upwardly and externally rotated and posteriorly tilted position which resulted in an increased 

AHD in healthy overhead athletes. Third, the influence of posterior shoulder thightness, an 

adaptation frequently found in the dominant shoulder of overhead ahtletes, on the AHD was 

examined. Previous studies showed that posterior shoulder tightness is related to alterations of 

glenohumeral and scapulothoracic kinematics. The consequence of these alterations for 

subacromial space size remained unexplored. We showed a smaller AHD at the dominant side in 

a selected group of athletes with 15° or more internal rotation range of motion loss. This 

strenthens the belief that posterior shoulder tightness could be related to subacromial 

impingement.  

 



 

 

SJO Summary 

Rehabilitation of patients with rotator cuff tendinopathy should be aimed at correcting 

kinematics to diminish subacromial impingement. The third aim of this thesis was to contribute 

to conservative treatment of patients with rotator cuff tendinopathy by further investigating 

three aspects of this treatment: posterior shoulder stretching, scapular muscle balance training 

and eccentric training.  

Both healthy overhead athletes and subjects with rotator cuff tendinopathy associated with 

subacromial impingement have been shown to regularly suffer from posterior shoulder tightness 

and GIRD. Stretching the posterior shoulder to restore internal rotation ROM is suggested in 

management of subacromial impingement in overhead athletes. Moreover, stretching has been 

recommended to prevent shoulder injuries and enhance sports performance. We investigated the 

change of AHD after a 6 week sleeper stretch program in healthy overhead athletes and found an 

increased range of motion and AHD in healthy overhead athletes with posterior shoulder 

tightness. 

To increase muscle strength is another important aim of treatment in patients with rotator cuff 

tendinopathy. In light of enlarging the subacromial space, obtaining correct scapular position and 

motion is crucial. The serratus anterior has been shown to contribute to impingement sparing 

kinematics of the scapula. The challenge is to find exercises that selectively activate the serratus 

anterior with minimal contribution of the upper trapezius to improve UT/SA muscle balance. Four 

variations of the knee push-up plus were found to have a low UT/SA thus appropriate for patients 

with rotator cuff tendinopathy. Moreover, it was shown that extension of the homolaterale leg 

during knee push up plus increases serratus anterior activity, while extension of the homolaterale 

leg increases lower trapezius activity.  

Since evidence is growing on the contribution of intrinsic degeneration to development of rotator 

cuff tendinopathy, this should be acknowledged in treatment as well. From research on 

physiotherapy treatment in other tendinopathies, like for example Achilles tendinopathy, we’ve 

learned that eccentric training leads to better outcome and even regeneration of tendon tissue. 

Given the similarities in terms of pathology, it could be questioned if these results can be 

transferred to rotator cuff tendinopathy. Therefore, we examined the influence of a traditional 

rotator cuff training program whether or not combined with eccentric training on pain, function 

and isometric force. In patients with rotator cuff tendinopathy we showed that adding an 

eccentric training program to a multimodal rehabilitation program results in superior abduction 

strength gain at 90° of abduction. Moreover, adding an eccentric training program leads to equal 

decrease of pain and improvement of function compared with the same treatment without 

eccentric training.  
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SLT Samenvatting 

Schouderpijn is een veel voorkomende klacht in de kinesitherapeutische praktijk. Tendinopathie 

van de rotator cuff is hierbij een vaak gestelde diagnose. Een adequaat opgesteld 

behandelprogramma vereist inzicht in de mechanismen geassocieerd met rotator cuff 

tendinopathie.  

 

Het eerste doel van dit doctoraat was de rol van proprioceptie bij patiënten met rotator cuff 

tendinopathie te onderzoeken. Proprioceptie zorgt ervoor dat beweging precies en doelgericht 

kan worden gestuurd. Voorgaand onderzoek toonde gestoorde houdings- en bewegingszin bij 

patiënten met rotator cuff tendinopathie. Wij onderzochten het derde onderdeel van 

proprioceptie, namelijk krachtsensatie, en vonden dat patiënten met rotator cuff tendinopathie 

hun endo- en exorotatie kracht vrij accuraat kunnen inschatten en stabiel overbrengen maar dat 

ze de neiging hebben om meer kracht te leveren dan nodig.  

 

Bovenhandse sporters krijgen vaak te maken met rotator cuff tendinopathie geassocieerd met 

subacromiaal impingement en vormen bijgevolg een interessante populatie voor onderzoek. Het 

tweede doel van dit doctoraat was de grootte en het biomechanisch gedrag van de subacromiale 

ruimte bij bovenhandse sporters te onderzoeken.  

Ten eerste werd de invloed van training op de acromiohumerale afstand (AHA, de afstand van 

acromion tot humerus als representatie voor de grootte van de subacromiale ruimte) nagegaan. 

Er werd aangetoond dat de AHA groter is aan de dominante zijde bij bovenhandse sportsters en 

groter is bij elite sportsters in vergelijking met recreatieve sportsters. Dit duidt mogelijks op een 

verband tussen fysieke activiteit en de grootte van de subacromial ruimte.  

Ten tweede werd onderzocht wat de invloed is van schouderspier vermoeidheid op de AHA. De 

schouder is intrinsiek instabiel en hangt voornamelijk van de sturing door de schouderspieren. 

Vermoeidheid van deze spieren wordt verondersteld bij te dragen tot subacromiaal 

impingement. Echter, uit ons onderzoek konden we aantonen dat bij gezonde sporters de 

scapula compenseert voor deze vermoeidheid en meer opwaarts en extern roteert en posterieur 

tilt met als gevolg dat de acromiohumerale afstand stijgt.  

Ten derde waren we geïnteresseerd in de invloed van posterieure schouderverkorting op de AHA. 

Dit is een adaptatie in de schouder die heel frequent gezien wordt bij bovenhandse sporters. 

Voorgaand onderzoek toonde reeds aan dat in aanwezigheid van posterieure schouderverkorting 

de glenohumerale en scapulothoracale kinematica verandert. De invloed hiervan op de AHA bleef 

echter onduidelijk. Bij een selectie sporters met uitgesproken glenohumeraal endorotatie deficiet 

aan de dominante zijde, werd in dit doctoraat een significant kleinere acromiohumerale afstand 

aan de dominante zijde gevonden.  

 



 

 

SLS Samenvatting 

De revalidatie van patiënten met rotator cuff tendinopathie moet gericht zijn op herstel van de 

kinematica om de subacromiale ruimte terug te vergroten. Het derde doel van dit doctoraat was 

om bij te dragen tot de kwaliteit van conservatieve behandeling door onderzoek te doen naar 

drie aspecten die deel uitmaken van die revalidatie: posterieure shouder stretching, scapulaire 

spierkrachttraining en excentrisch trainen.  

In de revalidatie van patiënten met rotator cuff tendinopathie alsook in de preventie van 

schouderklachten bij bovenhandse sporters wordt geadviseerd om de posterieure schouder te 

stretchen. Uit ons onderzoek bleek dat na 6 weken stretchen met de sleeper stretch de 

glenohumerale endorotatie significant toeneemt alsook de acromiohumerale afstand.  

Scapulaire spierkachttraining is eveneens een belangrijk onderdeel van de behandeling van 

patiënten met rotator cuff tendinopathie. Met het oog op het verruimen van de subacromiale 

ruimte is het belangrijk om een correcte scapulaire positie en beweging na te streven. De serratus 

anterior draagt hiertoe bij en het versterken van deze spier lijkt dan ook aangewezen. De 

uitdaging bestaat erin  om oefeningen te vinden die geschikt zijn voor het herstellen van het 

scapulair intermusculair evenwicht tussen upper trapezius en serratus anterior om zo een 

correcte scapulaire kinematica te bevorderen. Uit ons onderzoek konden 4 oefeningen worden 

geselecteerd met een lage ratio UT/SA die bijgevolg geschikt zijn voor revalidatie van patiënten 

met rotator cuff tendinopathie. Daarnaast werd aangetoond dat strekken van het homolaterale 

been tijdens de knee push-up plus oefening activiteit van de serratus anterior verhoogt, terwijl 

strekken van het heterolaterale been activiteit van de lower trapezius verhoogt. 

Naast extrinsiek subacromiaal impingement is er eveneens bewijs voor intrinsieke factoren die 

aanleiding geven tot intratendineuze degeneratie in de rotator cuff. Dit houdt in dat de 

behandeling zich mogelijks niet alleen moet richten op het wegnemen van subacromale 

compressie maar eveneens dient bij te dragen tot versterken van het peesweefsel. Bij Achilles 

tendinopathie werd aangetoond dat excentrisch trainen degeneratie van peesweefsel kan 

herstellen. Gezien de grote gelijkenissen op histologisch vlak tussen rotator cuff en Achilles 

tendinopathie kan de vraag gesteld worden of excentrisch trainen ook bij deze eerste leidt tot 

goede resultaten. Een laatste studie van dit doctoraat onderzocht de meerwaarde van het 

toevoegen van een excentrisch trainingsprogramma in de revalidatie bij patiënten met rotator 

cuff tendinopathie. De groep die excentrisch trainde had een grotere abductie krachtswinst 

wanneer de arm zich op 90° abductie bevindt. Het toevoegen van het excentrisch 

trainingsprogramma leidde tot even goede resultaten qua pijndaling en functieverbetering.  
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SLC Appendix 

Physiotherapy treatment of patients with rotator cuff tendinopathy with associated subacromial 

impingement should be a multimodal approach, addressing all factors that could be related to 

narrowing of the subacromial space. A detailed clinical examination should therefore precede 

treatment and identify the presence of the impairments 1 to 4, presented in the figure below. 

Depending on the impairments found during clinical examination, goals should set to restore 

them and tools should be chosen to reach this goal.  

In addition to restoring factors that could narrow the subacromial space, treatment should aim to 

improve tendon tissue quality using eccentric exercises.  

 

 

 

 

 

A combination of manual therapy and a comprehensive home exercise program can be advised. 

Below, some examples of manual therapy techniques and specific exercises are listed to reduce 

pain, improve motor control, increase soft tissue and articular flexibility, improve muscle strength 

and aim to regenerate tendon tissue in patients with rotator cuff tendinopathy associated with 

subacromial impingement.  

 

 

 

 

 

Impairment Goal                    Tool

1. Posterior shoulder stiffness 

2. ���� Pectoralis Minor length

3. Scapular dyskinesis 

4. ���� Rotator cuff strength

5. Thoracic hyperkyphosis/hypomobility

6. ���� Quality tendon tissue

Motor Control 

� Soft tissue flexib.

� Articular mobility

� Muscle strength

Tendon regeneration

Manual Therapy

Motor learning

Stretching

Mobility exercises

Strength training

Eccentric training



 

 

SLJ Appendix 

Pain relief  

Manual therapy  

Glenohumeral traction in loose packed position (55° abduction, 

35° horizontal adduction, neutral rotation) 

 

Inferior translation of the humeral head 

 

 

 

 

 

1. Posterior shoulder stiffness  

Manual Therapy  

Glenohumeral internal rotation at 90° forward flexion with 

scapular stabilization 

 

Dorsal glide of the humeral head in glenohumeral loose packed 

position 

 

Dorsal glide of the humeral head in glenohumeral internal 

rotation (hand behind back) 
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Scapular retraction/posterior tilt in glenohumeral internal 

rotation (hand behind back)  

 

Glenohumeral horizontal adduction with scapular stabilization 

 

 

 

 

 

 

 

 

Stretching  

Horizontal adduction stretch: 

The arm is at 90° forward flexion and is brought towards 

horizontal adduction by the non-stretched side. Attention must 

be paid to maintaining scapular retraction to stretch the 

glenohumeral joint. 

 
 

Sleeper stretch:  

The arm is at 90° forward flexion and 90° horizontal adduction, 

the elbow is flexed 90°. The upper hand grasps the hand of the 

shoulder to be stretched and brings it downward to the floor 

while maintaining 90° forward flexion, 90° horizontal adduction 

in the shoulder and not allowing scapular elevation. 

 

Modalities:  

- 3x30”  

- 1x/day during first 6 weeks 

- 1x/2days during next 6 weeks 
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2. Shortened Pectoralis Minor  

Manual therapy  

Soft tissue technique: 

The therapist strums perpendicularly onto the fibers of the 

pectoralis minor. 

 

 

Stretching the pectoralis minor:  

With one hand the therapist pushes the coracoid process 

towards the table to move the scapula towards retraction and 

posterior tilt, with the other hand the therapist pushes the first 

ribs in direction of the contralateral hip. 

Stretching  

Pectoralis minor self stretch: 

The patient lies supine, bends the knees and turns them to the contralateral 

side of the side to be stretched. Next, the arm is brought up in a circular 

movement diagonally upward and pauses at each point at which stiffness is 

experienced. Goal is to facilitate posterior tilt and retraction of the scapula. 

 

Door stretch:  

The patients places the hand in a door frame at shoulder height and leans 

forward so that the trunk passes the door frame. Next the trunk is rotated 

away from the side to be stretched while scapular retraction is maintained. 

 

Modalities:  

- 3x30”  

- 1x/day during first 6 weeks 

- 1x/2days during next 6 weeks 

 



 
SLP Appendix 

3. Scapular dyskinesis  

Manual therapy  

Soft tissue technique to release adhesions around the scapula. 

 

 

Soft tissue technique to decrease upper trapezius tension:  

The therapist strikes with the thumb parallel between the fibers 

of the upper trapezius from the insertion to the origin. 

 

 

Upper trapezius/levator scapue trigger point treatment 

 

 

Scapulothoracic mobilization towards upward 

rotation/downward rotation, elevation/depression, 

protraction/retraction 

 

 

Mobilization with movement:  

The therapist assists the scapula towards upward rotation, 

posterior tilt and external rotation during forward flexion/ 

scapular abduction/ abduction. 
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Motor learning  

Scapular orientation:  

The therapist learns the patient how to place the 

scapulae in a correct and stable position towards 

posterior tilt and retraction. 

 

Upper trapezius relaxation during 

abduction:  

The therapist learns the patient how to 

relax the upper trapezius during forward 

flexion/ scapular abduction/ abduction. 

 

Scapular strength training  

Prone retroflexion  

 

 

Prone horizontal abduction with external rotation  

 

 

Sidelying external rotation 
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Side lying forward flexion

W-V exercise

Low row

Knee push-up plus
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Knee push-up plus with homolateral leg extension (with a wobble board)

One-handed knee push-up plus

Modalities:

- Color of Theraband or dumbbell weight are chosen so that the exercise can be performed

painfree

- Progression from 3x10 to 5x20 repetitions

- 1x/day

1. Decreased rotator cuff strength

Manual therapy

Trigger point treatment infraspinatus/subscapularis/…
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Rotator cuff strength training

External/ internal rotation in neutral position with

Theraband

(A towel can be placed between the trunk and

elbow during external rotation to decrease deltoid

activity through antagonistic adductor activity.)

W-exercise bilateral with Theraband

Sidelying external rotation in neutral position with dumbbell

External/internal rotation at 90° of abduction with Theraband
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Full can abduction with dumbbell/Theraband

Modalities:

- Patients overestimate internal and external rotation force.(Chapter 1) The therapist should be

aware of this fact when dosing the exercises and guarantee the use of the intended muscles,

the rotator cuff muscles and not the prime movers like for example the pectoralis major, with

the opposed load. Exercises that can be performed to improve appreciation of the exerted

muscle force are for example:

 Gradually contracting the external/internal rotators to maximum in 4 seconds and

gradually releasing

 Contracting maximum and contracting with half of this effort or a quarter of this effort,…

- Color of Theraband or dumbbell weight is chosen so that the exercise can be performed

painfree

- Progression from 3x10 to 5x20 repetitions

- 1x/day

2. Thoracic hyperkyphosis/hypomobility

Manual therapy

Prone thoracic spine flexion/ extension harmonics:

Therapist places one hand on occiput and one hand on

thoracic spinous process and simultaneously moves both

hands rhythmically towards cranial and distal.
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Prone thoracic spine rotation harmonics:

Therapist places one hand on iliac crest and the thumb of the

other hand on the thoracic spinous process and alternates

laterolateral rhythmic movement of both hands.

Seated mobilization:

1. Cervicothoracic junction rotation mobilization

2. Thoracic spine lateroflexion/ rotation mobilization

3. Thoracic spine extension mobilization

Motor learning

Correcting forward head and rounded shoulder

posture:

Patient performs a chin tuck motion with the

head and lengthens the thoracic spine.
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Integrate a  good posture in all home exercises.

In addition, functional exercises to maintain a good posture can be performed, depending on patients’

needs.

Mobility exercises

Sidelying rotation

Seated extension

Seated rotation with arm extension

Modalities:

- 3x20 repetitions

- 1x/day – 1x/2days



176 Appendix

3. Decreased quality of tendon tissue

Eccentric training

Eccentric scapular abduction standing

Eccentric scapular abduction side-lying

Eccentric horizontal abduction side-lying

Eccentric horizontal abduction prone
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Eccentric external rotation supine

Eccentric external rotation standing

Eccentric upward diagonals

Modalities:

- Color of Theraband or dumbbell weight chosen so that the exercise elicits pain during the last

set of repetitions between 1 and 5 on a VAS of 10.

- Pain should have subsided one hour after performing the exercise.

- Pain should not be worse the day after.

- Pain should not increase from day to day or from week to week.

- 3x15 repetitions

- 2x/day

-
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Sport specific rehabilitation

Prone decelerating external rotation with plyoball

Internal/ external rotation at 90° with XCO trainer

Plyometric internal/external rotation at 90° abduction

…
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AHD: acromiohumeral distance

ANOVA: analysis of variance

CE: constant error

CV: coefficient of variance

D: dominant

EMG: electromyographic

ER/IR: ratio of the external to internal

rotators force

ER: external rotators

ET: eccentric training

GIRD: glenohumeral internal rotation

deficit

GLM: general linear model

HHD: hand held dynamometer

ICC: intraclass correlation coefficient

IR: internal rotators

KPP: knee push-up plus

LT: lower trapezius

MRI: magnetic resonance imaging

MT: middle trapezius

MVC: maximum voluntary contraction

MVIC: maximum voluntary isometric

contraction

ND: non-dominant

RCT: randomized clinical trial

RE: relative error

RMS: root mean square

ROM: range of motion

SA: serratus anterior

SD: standard deviation

SEM: standard error of measurment

SPADI: shoulder pain and disability index

SPP: standard push-up plus

TT: traditional rotator cuff training

US: ultrasound

UT/LT: ratio of upper to lower trapezius

muscle activity

UT/MT: ratio of upper to middle trapezius

muscle activity

UT/SA: ratio of upper trapezius to serratus

anterior muscle activity

UT: upper trapezius

VAS: visual analogue scale
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