
Thomas van den Heuvel

Automated 
low-cost ultrasound: 
improving antenatal care 
in resource-limited settings 



Automated low-cost ultrasound:
improving antenatal care in resource-limited settings

Proefschrift

ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus prof. dr. J.H.J.M. Krieken,
volgens besluit van het college van decanen

in het openbaar te verdedigen op woensdag 9 januari 2019
om 14.30 uur precies

door

Thomas Leon Adrian van den Heuvel

geboren op 15 mei 1990
te Roermond

This book was typeset by the author using LATEX2ε.

Cover design by Promotie In Zicht, Arnhem.

Copyright c© 2018 by Thomas van den Heuvel. All rights reserved. No part of
this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopy, recording, or any information storage
and retrieval system, without permission in writing from the author.

ISBN: 978-94-92896-98-8

Printed by Ipskamp Printing, Enschede.



Automated low-cost ultrasound:
improving antenatal care in resource-limited settings

Proefschrift

ter verkrijging van de graad van doctor
aan de Radboud Universiteit Nijmegen

op gezag van de rector magnificus prof. dr. J.H.J.M. Krieken,
volgens besluit van het college van decanen

in het openbaar te verdedigen op woensdag 9 januari 2019
om 14.30 uur precies

door

Thomas Leon Adrian van den Heuvel

geboren op 15 mei 1990
te Roermond

This book was typeset by the author using LATEX2ε.

Cover design by Promotie In Zicht, Arnhem.

Copyright c© 2018 by Thomas van den Heuvel. All rights reserved. No part of
this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopy, recording, or any information storage
and retrieval system, without permission in writing from the author.

ISBN: 978-94-92896-98-8

Printed by Ipskamp Printing, Enschede.



CONTENTS v

TABLE OF CONTENTS

1 General introduction 1

1.1 Maternal mortality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Role of the sonographer . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Computer-aided diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Development of a low-cost medical ultrasound scanner 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Literature Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Comparative study of low-cost ultrasound devices 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Automated measurement of fetal head circumference 53

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Automated fetal head detection for estimation of the head circumference 77

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Evaluation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Promotoren
Prof. dr. ir. B. van Ginneken
Prof. dr. ir. C.L. de Korte

Manuscriptcommissie
Prof. dr. F.P.H.A. Vandenbussche
Prof. dr. W.J. Niessen (Technische Universiteit Delft)
Dr. ir. J.G. Bosch (Erasmus Medisch Centrum Rotterdam)

The research described in this thesis was carried out at the Diagnostic Image Analy-
sis Group and the Medical Ultrasound Imaging Center, Radboud University Medical
Center (Nijmegen, the Netherlands).
The work presented in this thesis was carried out within the Radboud Institute for
Health Sciences.
This work was partially funded by the Life Sciences & Health for Development Fund,
Project No. LSH14ET04.



CONTENTS v

TABLE OF CONTENTS

1 General introduction 1

1.1 Maternal mortality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Role of the sonographer . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Computer-aided diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Development of a low-cost medical ultrasound scanner 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Literature Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Comparative study of low-cost ultrasound devices 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Automated measurement of fetal head circumference 53

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Automated fetal head detection for estimation of the head circumference 77

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Evaluation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Promotoren
Prof. dr. ir. B. van Ginneken
Prof. dr. ir. C.L. de Korte

Manuscriptcommissie
Prof. dr. F.P.H.A. Vandenbussche
Prof. dr. W.J. Niessen (Technische Universiteit Delft)
Dr. ir. J.G. Bosch (Erasmus Medisch Centrum Rotterdam)

The research described in this thesis was carried out at the Diagnostic Image Analy-
sis Group and the Medical Ultrasound Imaging Center, Radboud University Medical
Center (Nijmegen, the Netherlands).
The work presented in this thesis was carried out within the Radboud Institute for
Health Sciences.
This work was partially funded by the Life Sciences & Health for Development Fund,
Project No. LSH14ET04.



vi CONTENTS

6 Preforming prenatal ultrasound without a trained sonographer 99
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7 General discussion 115

Summary 123

Samenvatting 127

Publications 131

PhD portfolio 135

Bibliography 137

Dankwoord 147

Curriculum Vitae 153



vi CONTENTS

6 Preforming prenatal ultrasound without a trained sonographer 99
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7 General discussion 115

Summary 123

Samenvatting 127

Publications 131

PhD portfolio 135

Bibliography 137

Dankwoord 147

Curriculum Vitae 153

1 

General introduction



1.2 Ultrasound 3

Figure 1.1: Maternal mortality ratio: number of maternal deaths per 100.000 live

births (2015).

This thesis describes how low-cost ultrasound in combination with automated
image analysis could be used to automatically determine maternal risk factors with-
out the need of a highly trained sonographer. This would decrease the costs and
vastly decrease the time that is currently required for training sonographers, which
would make the introduction of prenatal ultrasound in resource-limited settings
much easier.

1.2 Ultrasound

Medical ultrasound devices make use of ultrasound to create an image of the inside
of the human body. The ultrasonic wave produced by the ultrasound transducer
cannot be heard with the human ear, because the frequency of the produced sound
waves usually ranges from 3 to 12 MHz, while the frequency of the sound that can
be picked up with human hearing ranges from 20 Hz to 20 kHz. An ultrasound
transducer uses so-called piezo-electric elements to produce and record the ultra-
sound waves. The piezo-electric element starts oscillating when a voltage is applied.
This oscillation generates a sound wave that propagates through the tissue. The
sound wave will be partially reflected when it crosses the interface between two tis-
sues with a difference in density. This reflected wave is called an echo and when an
echo returns to the transducer, the piezo-electric element will oscillate, generating
a voltage over the piezo-electric element. The stronger the echo, the stronger the
oscillation, the higher the voltage, and the brighter it will appear on the monitor.

2 General introduction

1.1 Maternal mortality

Each day more than 800 pregnant women die as a consequence of their pregnancy.
99% of these deaths occur in resource-limited countries1. Figure 1.1 shows a map of
the world with the number of maternal deaths per 100.000 live births in each country.
This figure illustrates that the maternal mortality ratio is highest in resource-limited
countries. Ultrasound is commonly used to detect maternal risk factors, since it is
a real-time, non-invasive imaging method that does not require ionizing radiation.
The WHO has published a report with recommendations to decrease maternal mor-
tality in developing countries2. Although not all maternal deaths in resource-limited
countries can be avoided by introducing ultrasound imaging, the WHO strongly rec-
ommends the use of ultrasound imaging. An ultrasound scan is recommended for
accurate gestational age estimation, for detection of multiple pregnancies, fetal mal-
presentation, fetal anomalies, placenta previa, and polyhydramnios, to confirm fetal
viability, and for improvement of a woman’s pregnancy experience. The accurate
estimation of gestational age is critical for the appropriate delivery of time-sensitive
interventions in pregnancy, as well as management of pregnancy complications, par-
ticularly pre-eclampsia and preterm birth, which are major causes of maternal and
perinatal morbidity and mortality in low- and middle-income countries. In addition,
estimation of gestational age could be used to detect intra-uterine growth restriction
and induction of labor for post-term pregnancy.

The report of the WHO also states that health-care providers sometimes do not
feel suitably trained to provide screening and testing procedures for maternal care.
This suggests that they might welcome ultrasound scans. The introduction of ul-
trasound could therefore plausibly increase antenatal care service utilization and re-
duce morbidity and mortality when accompanied by appropriate referral and man-
agement.

Ultrasound imaging requires a trained sonographer to acquire and interpret the
ultrasound images. The WHO mentioned that with appropriate training there can
be a potential task shift from trained sonographers and doctors to trained nurses,
midwives and clinical officers, provided that ongoing training, staff retention, qual-
ity improvement activities and supervision are ensured, and mentoring and referral
systems are in place.

Unfortunately, there is a severe shortage of well-trained medical personnel in
resource-limited countries3–5. Training sonographers requires a significant invest-
ment of time and resources, which impedes the introduction of ultrasound in these
countries. This keeps ultrasound imaging out of reach for most pregnant women in
developing countries.
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1.3 Role of the sonographer 5

Figure 1.2: Schematic overview of a line-by-line acquisition of a curved ultrasound

transducer. N stands for the number of elements, which is typically 192 or 256 for

curved ultrasound transducers. The images area in this example includes a cross

section of the fetal head.

1.3 Role of the sonographer

A sonographer is trained to acquire and interpret ultrasound images that can be
used for the diagnosis of a patient. This requires knowledge of both the ultrasound
device and the human anatomy to be able to navigate the ultrasound transducer to
the correct location to form an image that contains the information needed to make a
diagnosis. Theses correct locations are called “standardized planes” that contains a
certain cross-section of the area of interest. For prenatal ultrasound, the sonographer
needs to acquire several standardized planes to perform measurements of the fetus.
Acquisition of these standard planes requires movement of the transducer over the
abdomen of the pregnant woman, while maintaining contact with the skin using
ultrasound gel. This gel is required to transfer the sound wave from the transducer
into the body. During the examination, sonographers adjust several settings on the

4 General introduction

The echo becomes stronger when the density between two tissues is larger. Transi-
tions from soft tissue to bone will cause a strong reflection and will therefore appear
bright on an ultrasound image. Most echo signals are caused by inhomogeneities
in the tissues that are smaller than the wavelength of the ultrasound. These small
reflectors scatter the ultrasound signal in all directions. Tissue contains many scat-
terers (typically more than 10 per cubic wavelength), the coherent summation of all
the scattered signals will create the speckle pattern in the formed ultrasound image.

The speed of ultrasound waves through the human body lies around 1540 meters
per second. The echoes that are formed at a larger distance to the transducer take
more time to return to the transducer. This time-depth dependency is used to deter-
mine from which depth the echo is coming from. For example: if it takes 130 µs for
an ultrasound wave to return to the transducer it can be approximated that the wave
traveled a total of 20 cm, so the echo was created at a depth of 10 cm.

An ultrasound transducer consists of multiple piezo-electric elements, which are
used to acquire a so-called line-by-line acquisition. Figure 1.2 shows a schematic
overview of this line-by-line acquisition. A voltage is applied to a subset of piezo-
electric elements on the left side of the transducer, which forms an ultrasound wave
that travels though the body. All echoes that return to the transducer are recorded
to form the first line of the image. After the echoes of the first line of the image are
recorded, a voltage is applied to a subset of piezo-electric elements shifted one ele-
ment to the right. This results in the next line of the image. This process is repeated
for all piezoelectric elements to form one 2D image. This line-by-line acquisition is
repeated dozens of times per second and displayed on the monitor of the ultrasound
device which results in the ’real-time’ recording of the imaged area.

There are also ultrasound transducers that can create a 3D volume, but these are
not considered in this thesis, because these transducers are too expensive for use
in a resource-limited setting. The costs of an ultrasound device are low compared
to other medical imaging modalities like computed tomography and magnetic reso-
nance imaging, but most ultrasound devices used in clinical practice today still cost
between $20k and $200k. Innovations in recent years have made it possible to build
ultrasound devices that are more portable and substantially cheaper. There are al-
ready devices on the market that can be connected to a laptop, tablet or smartphone.
This makes them suitable for areas where there is no steady electrical power supply.
The low-cost ultrasound devices that are available on the market today can be pur-
chased between $2k and $10k, which makes ultrasound more affordable for use in
resource-limited settings. Chapter 2 of this thesis takes the definition of low-cost ul-
trasound even a step further by describing the development of an ultrasound device
with aimed production costs of less than $100.
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In this thesis, it was therefore our goal to combine the OSP, obtained with a low-
cost ultrasound device, with automated image analysis to automatically detect ma-
ternal risk factors. If successful, there would be no need to train a sonographer to
both acquire and interpret the data. This would vastly reduce time and costs to train
sonographers and implement this approach in resource-limited settings.

1.4 Computer-aided diagnosis

The term computer-aided diagnosis (CAD) pertains to the use of computer algo-
rithms that assist the doctor in analyzing and interpreting medical images. There are
several ways to aid the doctor using computer algorithms. The computer algorithm
could perform a task that cannot be performed manually in the clinical workflow.
This could give the doctor additional information that is useful for making a diag-
nosis. Another option is the use of computer algorithms to perform a task faster
compared to the human observer. This would reduce reading time and therefore re-
duce costs. An additional benefit of computer algorithms is the fact that they do not
suffer from intra- and inter-observer variability. A human observer does not always
give the same result when he or she assesses the same image twice (intra-observer
variability) and two observers could also produce a different result when the same
image is interpreted (inter-observer variability). A computer algorithm always gives
the same result when the same image is evaluated twice. This constant performance
with a constant error is very important in clinical diagnosis, where each decision
could have an influence on the treatment of a patient.

Most CAD systems that are used in clinical practice today only aid the doctor,
since the doctor is (legally) responsible for the care of the patient. There are only a
few systems used in clinical practice that give an independent diagnosis. An exam-
ple is the CAD4TB software that autonomously reads X-ray images for the detection
of tuberculosisa. This software is mostly used in resource-limited settings where
there is a shortage of well-trained medical personnel, which therefore impedes the
screening of people with tuberculosis. This approach is comparable to the use of au-
tomated ultrasound analysis to address the shortage of sonographers presented in
this thesis.

The first CAD systems for medical imaging were created in the 1970s7,8. These
algorithms usually used rule-based approaches to analyze images. In 1990s there
was a shift towards feature extraction and statistical models for classification which
is referred as classical machine learning in this thesis. This approach is discussed in
the next paragraph. In the first year of my PhD, a new trend emerged in medical

ahttps://www.delft.care/cad4tb/
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ultrasound device to obtain the most optimal image to perform the measurements.
Learning the skills that are required to obtain these images takes months or even
years. Even after this training, ultrasound imaging still suffers from intra- and inter-
observer variability.

As already mentioned, there is a severe shortage of well-trained medical person-
nel in resource-limited countries, which impedes the introduction of ultrasound in
these countries. To obviate the need of a trained sonographer to acquire the im-
ages, DeStigter et al. 6 introduced the obstetric sweep protocol (OSP), which consists
of six predefined sweeps with the ultrasound transducer over the abdomen of the
pregnant woman (Figure 1.3). The OSP can be taught within a day to any health care
worker without any prior knowledge of ultrasound. This enables easy to learn acqui-
sition of the ultrasound data, but after acquisition there is still a trained sonographer
required to interpret the ultrasound images. Next to this, an internet connection is
required to send the acquired ultrasound data to a reader center with trained sono-
graphers. Such an internet connection is not always present in rural areas, which
complicates this approach.

Figure 1.3: Visualization of the obstetric sweep protocol, consisting of six predefined

free-hand sweeps with the ultrasound transducer over the abdomen of the pregnant

woman.
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1.4 Computer-aided diagnosis 9

learning algorithms learn the relevant features from the training data itself10. So,
there is no need to spend time on manually crafting features. In medical image
analysis the most used deep learning algorithms are based on convolutions. These
networks consist of multiple layers of convolutions that map the input to a next layer
using weighted values that are optimized during training. This approach is loosely
inspired on the visual cortex of the human brain, where the convolutions resemble
the response of a neuron. A disadvantage of deep learning is that these networks
need a lot of data to be able to train relevant features, which is especially difficult in
medical imaging where often only limited amounts of data are available.

1.4.3 CAD for ultrasound

Most CAD systems aid the clinician in obtaining a more accurate measurement or ac-
quire the measurement in less time. For ultrasound imaging, a trained sonographer
is required to acquire the images. Since the acquisition of the image usually takes
more time than obtaining the measurement itself, the time gain for CAD systems in
the entire workflow is fairly limited. Research in CAD for ultrasound has therefore
not focused on reducing measuring time, but on automated evaluation of 3D ultra-
sound data to improve upon current clinical practice, since the 3D volume contains
more information compared to a 2D cross section. This could lead to more accurate
estimation of relevant parameters for diagnosis by decreasing the observer variabil-
ity, since the sonographer does not have to acquire the exact correct cross section. It
is difficult for a human to interpret a complete 3D volume, so these algorithms could
also aid the sonographer by construction the correct cross section from a 3D volume.
But as mention earlier, the use of 3D ultrasound is not evaluated in this thesis, since
this approach is too expensive for use in resource-limited settings.

Another CAD approach is guidance of a user in obtaining the correct standard-
ized plane to extract relevant information for diagnosis. This approach still requires
the training of a human to use an ultrasound device and interpret the images to
obtain relevant information for diagnosis.

A third approach, which is used in this thesis, is to extract information from pre-
defined free-hand sweeps. The main advantage of this approach is that these prede-
fined sweeps can be taught to any health care worker, without any prior knowledge
of ultrasound, within a day. The disadvantage is that the standard plane will mostly
likely not be present in the data, which could result in a less accurate measurement.
In this thesis we investigate which maternal risk factors could be automatically be
detected with the use of predefined sweeps.
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image analysis called deep learning. This approach will be discussed in paragraph
1.4.2.

1.4.1 Classical machine learning

The CAD systems that use classical machine learning usually contain two parts: fea-
ture extraction and classification. Features are numerical values derived from the
imaging data and are used to discriminate between the classes that you would like
to separate. These features are commonly hand-crafted, which means that the hu-
man who designs the computer system uses domain knowledge of a specific medical
field to determine which values to extract from the image. For example, if you would
like to extract all the pixels in an ultrasound image that belong to the fetal skull, you
could extract a feature from the image that describes that the intensity of pixels be-
longing to the fetal skull appear bright on ultrasound images. Unfortunately, not all
the bright pixels in an image belong to the fetal skull, so multiple features have to be
extracted from the image to be able to discriminate the pixels of the fetal skull from
its surroundings.

A classifier is a statistical model that makes a classification given the input fea-
tures. To be able to decide in which class an observation belongs, the model needs to
be trained with examples. In supervised learning, each example has a ground truth
value. Based on these training examples the model learns a decision boundary for
each combination of features. In the example of the detection of pixels that belong
to the fetal skull, the classifier receives features extracted from bright pixels that be-
long to the fetal skull and from darker pixels that belongs to the background. Next
to brightness, other features could describe if the pixels are located on curved, line-
like structures (typical for the fetal skull). The classifier combines all the features to
optimize the classification task. A separate test is used to evaluate the classifier. In
Chapter 4 we make use of a classical machine learning approach in which Haar-like
features are used in combination with a Random forest classifier to extract the pixels
in an ultrasound image that belong to the fetal skull. The classifier assigns a value
between zero and one to each pixel in the image that describes the probability for
that pixel to be part of the fetal skull.

1.4.2 Deep learning

The idea of deep learning already existed in the 1970s9, but application of deep learn-
ing in medical imaging became widely used in 20157,8, mainly due to improved com-
puting power, better algorithms to train deep networks, and the availability of large
datasets for training. The difference with classical machine learning is that deep
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1.5 Outline of this thesis

The research in this thesis aims to automatically detect as many maternal risk factors
as possible, using the most low-cost ultrasound device as possible. Figure 1.4 gives
an overview of the chapters in this thesis. The chapters of this thesis are ordered
by increasing level of automation. In the current clinical practice the sonographer
acquires the ultrasound images using mid-range devices (ranging from $20.000 until
$40.000) or high-end devices (ranging from $100.000 until $200.000). Each chapter
makes use of different ultrasound devices.

Chapter 2 discusses the development of a very low-cost ultrasound device that is
aimed at a production cost less than $100. This device was evaluated using simula-
tions, phantom experiments and in vivo images obtained by a trained sonographer.

Chapter 3 presents a comparison study of low-cost ultrasound devices to manu-
ally estimate the gestational age using the OSP, so the acquisition could be performed
by any health care worker in resource-limited countries, but a trained sonographer
was still required to interpret the images.

Chapter 4 introduces and validates a computer algorithm for the automated mea-
surement of the fetal head circumference using 2D standard plane ultrasound im-
ages. This chapter shows the feasibility of automating this measurement, but the
acquisition of the 2D standard plane for measuring the fetal head circumference still
requires a trained sonographer and all images were obtained using a high-end ultra-
sound device.

Chapter 5 presents a computer algorithm that is able to fully automatically es-
timate the gestational age with the use of the OSP. In this chapter the sweeps were
obtained with a mid-range ultrasound device at a maternal health clinic in Ethiopia.

Chapter 6 demonstrates that the algorithms can be extended to fully automati-
cally detect twins, estimate gestational age and determine fetal presentation all from
data obtained with the use of the OSP. In this study, all data was acquired with a
low-cost ultrasound device a maternal health clinic in Ethiopia. With this final chap-
ter we show the potential to detect these maternal risk factors without the need of a
trained sonographer in limited-resource countries. The low-cost ultrasound device
used in Chapter 6 can be connected to a laptop or tablet, which makes it a portable
solution for rural areas.
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2.1 Introduction

Worldwide, complications of pregnancy and childbirth lead to approximately 830
deaths every day, of which 99% occur in developing countries. This is mainly caused
by the limited access to health services in these areas of the world1. With the use of
ultrasound imaging it is possible to detect maternal mortality risk factors, but ultra-
sound devices remain out of reach for healthcare providers in low-resource settings
because even the lowest cost ultrasound devices available on the market today are
still cost prohibitive. Examples of low-cost devices recently entering the market in-
clude the Interson SeeMore probe, the SunBright SUN-806F and the Telemed MicrUs,
which can be purchased between $1.5k and $3k. The lowest cost devices emerging
from the established ultrasound vendors include Siemens Acuson P10, GE Vscan,
Philips Lumify and VISIQ, which are even more expensive options.

In this paper we present an ultrasound device with production costs less than
$100. This would make this ultrasound device an order of magnitude cheaper com-
pared to the low-cost ultrasound devices available on the market today. To achieve
this goal, a significant reduction in complexity of the hardware is required. The main
cost driver of ultrasound systems is the multi-element piezoelectric transducer ar-
ray which is intricate, expensive and also requires multiple channels of multiplexed
transmit and receive electronics. Hardware costs can be vastly reduced by simplify-
ing the transducer array to a single piezoelectric element, as shown in Fig. 2.1, which
is mechanically swept across the target scene.

A monostatic design, consisting of a single, mechanically scanned transmit/receive
transducer element, poses two main challenges. Firstly, the maximum achievable
frame rate will be limited compared to electronic beam-steering, because the single
element has to be moved across the target scene. However, as long as this frame
rate is sufficient for the diagnostic task in hand, the reduction in production costs
outweighs this disadvantage. Second, a monostatic design leads to compromises on
lateral resolution compared to an electronically focused transducer array, with reso-
lution constrained by the fixed beam pattern of a naturally focused transducer and
the sub-optimal resolution in the near and far field regions. To improve the lateral
resolution of the monostatic design, synthetic aperture focusing is explored here.

Besides the lower production costs, the monostatic design may offer some ad-
vantages compared to a full array transducer. The response of a monostatic system
is perfectly matched at each position and should also be more reliable as individual
elements of a transducer array can fail over time and degrade image quality11. Given
the intended low resource setting, the likelihood of probe damage is increased, hence
a cheap and easily replaceable transducer arrangement is preferable. A monostatic

14 Development of a low-cost medical ultrasound scanner

Abstract

In this chapter we present the design of low-cost medical ultrasound scanners aimed
at the detection of maternal mortality risk factors in developing countries.

Modern ultrasound scanners typically employ a high element count transducer
array with multichannel transmit and receive electronics. To minimise hardware
costs we employ a single piezoelectric element, mechanically swept across the tar-
get scene, and a highly cost-engineered single channel acquisition circuit. Given
this constraint, we compare the achievable image quality of a monostatic fixed focus
scanner (MFFS) with a monostatic synthetic aperture scanner (MSAS) using post-
focusing. Quantitative analysis of image quality was carried out using simulation
and phantom experiments, which were used to compare a proof-of-concept MSAS
prototype with a MFFS device currently available on the market. Finally, in vivo
experiments were performed to validate the MSAS prototype in obstetric imaging.

Simulations show that the achievable lateral resolution of the MSAS approach is
superior at all ranges compared to the fixed focus approach. Phantom experiments
verify the improved resolution of the MSAS prototype but reveal a lower signal to
noise ratio. In vivo experiments show promising results using the MSAS for clinical
diagnostics in prenatal care.

The proposed MSAS achieves superior resolution but lower SNR compared to
an MFFS approach, principally due to lower acoustic energy emitted. Significance:
The production costs of the proposed MSAS could be an order of magnitude lower
than any other ultrasound system on the market today, bringing affordable obstetric
imaging a step closer for developing countries.
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The monostatic design was evaluated using simulations, phantom experiments
and in vivo experiments. Simulations were made to compare the fundamental per-
formance of MFFS and MSAS designs. A proof-of-concept MSAS was then produced
and compared a MFFS ultrasound device via phantom experiments. In vivo experi-
ments were performed to validate the use of the MSAS prototype in prenatal care.

2.2 Literature Overview

Most reported work on synthetic aperture focusing in ultrasound imaging uses a
physical transducer array12–16. The use of synthetic aperture focusing in medical
imaging was introduced by Burckhardt et al. 17 who showed that synthetic aperture
with a single element gives a significantly higher lateral resolution compared to a
conventional B scan. In 2007, Kortbek et al. 18 used Field II simulations to show that
a single rotating mechanically focused concave element, which is used in an anorec-
tal ultrasound transducer, increased the SNR. In 2010 Opretzka et al. 19 used a fixed
focus single-element for high frequency ultrasound on a wire phantom and showed
a significant reduction of side lobes and of noise compared to delay-and-sum. (They
have also a paper in 2012 that shows animal results20). In 2011 Andresen et al. 21 used
synthetic aperture focusing with a single-element transrectal ultrasound transducer,
making a helical motion to obtain 3-D volumes. Simulations and a wire phantom ex-
periment showed a significant improvement in azimuth resolution. Although these
papers describe the use of synthetic aperture focusing for medical imaging with a
single element, none of this work has shown any In vivo results of this technique
and this is the first low-cost device using synthetic aperture focusing22 applied on
prenatal care in developing countries.

2.3 Methods

The MSAS prototype and testing methodology is presented in three sections: hard-
ware design, software design and simulation/experiments. A schematic overview
of the hardware and software is shown in Fig. 2.3. The hardware section describes
the design of the low-cost probe including the transducer, the scanning mechanism
and the communication interface. The software section describes the processing of
the raw data, acquired by the low-cost probe, to produce the B-mode image, which
includes the synthetic aperture focusing method. The simulations and experiments
section describes simulations, phantom and in vivo experiments that were performed
to evaluate the image quality of the MSAS.

16 Development of a low-cost medical ultrasound scanner

Figure 2.1: Left: A schematic drawing of the MSAS design. The red arrow indicates

the path of the single element transducer over the target scene. Right: experimental

setup with the MSAS prototype for the phantom experiments.

system may also allow a synthetic array with an element pitch, EP , smaller than the
physical element width, EW , which is not possible with a physical array, as shown
in Fig. 2.2.

Figure 2.2: Comparison of array geometry using a physical element of width, EW .

Each element position is indicated by a dot, resulting in the effective element pitch

distance, EP . (a) Convex synthetic array formed from a single moving element. (b)

Convex physical array.
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Figure 2.1: Left: A schematic drawing of the MSAS design. The red arrow indicates

the path of the single element transducer over the target scene. Right: experimental

setup with the MSAS prototype for the phantom experiments.

system may also allow a synthetic array with an element pitch, EP , smaller than the
physical element width, EW , which is not possible with a physical array, as shown
in Fig. 2.2.

Figure 2.2: Comparison of array geometry using a physical element of width, EW .

Each element position is indicated by a dot, resulting in the effective element pitch

distance, EP . (a) Convex synthetic array formed from a single moving element. (b)

Convex physical array.

2



2.3 Methods 19

width are determined by the size and geometry of the transducer aperture and the
centre frequency, fc. The physical size of the transducer chosen for the MSAS design
is strongly related to the synthetic aperture focusing process which will be explained
in Section 2.3.3. Operating frequencies of 2-5MHz are typical for ultrasound abdom-
inal probes as this represents the best trade-off between resolution and penetration
depth. In this design the transducer makes direct contact with the skin. With careful
design of the transducer housing shape, it is found that coupling to the skin can be
maintained via standard coupling gel.

Scanning Mechanism

The single element must be mechanically moved along a predetermined path in or-
der to collect the necessary echo data to build an image. This path was chosen to
match that of a standard convex array probe, as shown in Fig. 2.1, which repre-
sents the best trade-off between the probe dimensions and the field of view. The
transducer of the MSAS prototype makes a sweep of 50◦ on an 8cm radius arc corre-
sponding to a 200 element synthetic array. It takes 0.25 seconds to obtain one sweep,
which results in a frame rate of four frames per second (see Table 2.1 for an overview
of all parameters).

Positioning system A motor is used to sweep the single transducer across the tar-
get scene. The motor design has four design criteria: high torque to overcome the
contact friction with the skin, low electrical noise so it does not adversely affect the
Signal-to-Noise Ratio (SNR) of echo data, a maximum current of 300mA for opera-
tion from a single USB bus power supply and finally appropriate size/weight for the
probe to be easily held with one hand. A Voice Coil Motor (VCM) was designed to
satisfy these requirements24. This motor design uses no brushes and hence is electri-
cally quiet. Furthermore, direct drive means there is no audible noise from a gearbox
and there are minimal parts which will suffer mechanical wear. The torque gener-
ated by the motor is limited, as described in24, and if too much pressure is applied
by the operator the motor stalls before any discomfort or injury could result. Fluc-
tuations in speed due to variable friction have no inherent effect on image quality
as the optical encoder determines when the transducer is excited to ensure that the
data is accurately captured. Accurate position registration was achieved using an
optical rotation encoder with an angular resolution, θres, which then initiates each
transmit- and receive cycle at 0.25◦ increments. Basic closed loop speed control was
implemented, using a pulse-width modulation motor driver together with feedback
from the rotary encoder, in order to achieve near uniform sampling of the synthetic
array.
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Figure 2.3: A schematic overview of the MSAS prototype design.

2.3.1 Probe Hardware

Transducer

The first major step toward lower cost hardware is to replace the costly construction
of a multi-element piezoelectric transducer array and multiple channels of transmit
and receive electronics with a single element transducer and single channel of elec-
tronics, similar to early imaging systems17,23. The monostatic design significantly
simplifies the transducer construction to a single piece of piezoelectric material with
an electrical connection to each electrode, a quarter-wave matching layer on the ac-
tive face and an attenuative backing material on the opposite face. The axial reso-
lution is determined by the bandwidth, ∆f , whereas the lateral and elevation beam
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place to provide hardware to the developing world, it is believed that this represents
the cheapest possible processing and display unit, which lowers the overall system
costs. First, the echo data is filtered and down-converted. Second, synthetic aperture
focusing is applied to the baseband data. Last, post-processing steps are performed
to generate the final grey scale, B-mode image.

Pre-processing

After formatting the echo data, band pass filtering is applied over a bandwidth of
2MHz around the centre frequency, fc, to remove out of band energy from the data.
Then a time varying gain curve is applied to the echo data to compensate for atten-
uation with depth. Finally the echo data is down-converted to a complex baseband
representation.

Table 2.1: MSAS prototype parameters

Name Symbol Value
Centre Frequency fc 4.2 MHz
Bandwidth ∆f 2 MHz
Range R 0.15 m
Average speed of sound in tissue c 1540 ms−1

Radius of Curvature 0.082 m
Lateral Arc Length θL 50◦

Angular Resolution θres 0.25◦

ADC Resolution ADCres 14 bit
Sampling Frequency fs 12 MS/s

Element Width EW 2 mm
Element Length EL 7 mm
Element Thickness ET 0.5 mm
Near Field Lateral NL 2.7 × 10−3 m
Near Field Elevation NE 0.034 m
Beam Spread Angle Lateral αL 10.8◦

Beam Spread Angle Elevation αE 3.1◦

Frames/s (software limited) 4
Data Throughtput (4FPS) 30 Mb/s

20 Development of a low-cost medical ultrasound scanner

Transmit Electronics The transmit circuit is required to produce a short high volt-
age pulse to excite the transducer at its resonance. The duration of the pulse in cycles
should be the upper bound of the Q factor of the transducer (2.1).

Q =
fc
∆f

(2.1)

A boost converter was used to produce 48V from the 5V USB supply which was
then used to supply a class-E amplifier. The inductor in this amplifier topology was
selected to provide a Q-magnification of 2, hence producing a 96V 2-cycle pulse at
4.2MHz to drive the transducer.

Receive Electronics The data acquisition sub-system is the most expensive elec-
tronic component of a medical ultrasound device, typically requiring multiple chan-
nels of high bandwidth, low noise amplifiers/filters and high specification Analogue
to Digital Converters (ADCs). Even when simplifying to a single channel, these com-
ponents still represent a large proportion of the overall system cost. Careful design
and performance trade-offs must be considered to achieve a truly low-cost device.
The ADC of the MSAS design was chosen as the optimum balance between price and
performance in terms of signal to noise ratio as estimated by the ideal ADC equation
(2.2), where b is the bit resolution. Based on these criteria 14-bit ADC was selected
capable of sampling at 12MS/s which costs < $10 in large quantities.

ADCSNR = 1.76 + 6.02b+ 10 log10

(
fs

2 ·∆f

)
dB (2.2)

Controller The controller is synchronises all positioning, ultrasound transmission
and data acquisition operations and transfers echo and position data to the process-
ing software.

2.3.2 Interface

The MSAS probe was designed to interface to a standard USB 2.0 connection which
provides sufficient data rate and power supply for this design. This ensures compat-
ibility with many processing platforms, whether new or legacy.

2.3.3 Software

The processing software was developed to perform the signal processing and dis-
play the B-mode image on readily available, low-cost platforms such as PCs and
laptops. Given the wide availability of PCs and the number of schemes already in
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delays, dn, phase rotations, φ, and weightings, Wij , as given by (2.5). The sample
delay, dn, is calculated as in (2.6) with the two-way path length, Lp, the sampling
frequency, fs, and the average speed of sound in tissue c. The phase rotation, φ, is
calculated as in (2.7) using the centre frequency, fc. The two way path length, Lp,
is calculated using (2.8) where (xa, ya) and (xf , yf ) are the x and y coordinates of
the aperture element and the coordinates of focus respectively. The weightings, Wij ,
are selected from an N length Tukey window function25 to achieve an acceptable
trade-off between main lobe width and side lobe levels.

Pixelij =

∣∣∣∣∣
1

N
·
N−1∑
n=0

Wij[n] · Bij [n, dn] · φij [n]

∣∣∣∣∣ (2.5)

dn =

⌊
Lp[n] · fs

c

⌉
(2.6)

φij[n] =
−2 · π · Lp[n] · fc

c
(2.7)

Lp[n] = 2 ·
√(

x2
ij − x2

a[n]
)2

+
(
y2ij − y2a[n]

)2 (2.8)

There are two key advantages of this technique. Firstly, the effective transducer aper-
ture increases proportional to the axial range which makes lateral resolution less de-
pendent on range. In the case of a linear scan path, the lateral resolution becomes
independent of range but in the case of a convex array some degradation of lateral
resolution with respect to range remains, depending on the radius of curvature. Sec-
ondly, synthetic focusing of signals gathered from a small physical aperture ensures
that the best possible beam pattern is formed at every range and eliminates the dis-
tortions seen in the near field of a larger physical aperture.

Post-processing

Two straightforward post-processing steps were performed to improve the visual
quality of the B-mode image for clinical use. First, a log compression was performed
to adjust the dynamic range. Second, a stick filter26 was applied to reduce coherent
speckle in the final image.

2.3.4 Simulations and experiments

Simulations and experiments were performed to evaluate the MSAS design. First,
Field II simulations were used to compare the image quality of MSAS versus MFFS.
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Synthetic aperture focusing

When using a fixed focus approach with a single mechanically swept transducer, the
B-mode image is constructed by a simple polar to Cartesian conversion of echo data
from each direction viewed. The lateral resolution of such a system is dependent on
the beam spread angle, α which favours a large aperture diameter, ED (2.3). How-
ever, the image will also be distorted due to the complex beam shape up to the near
field distance, Dnear, given by (2.4) which is proportional to the square of ED. Hence
any fixed focus system represents a trade-off between the extent of the near field
and the beam spread in the far field which suggests that the optimum fixed focus
transducer for typical obstetric imaging, at 4MHz and up to 15cm range, consists
of a ≈ 15mm diameter ceramic disk with an acoustic lens to bring the natural focus
back to ≈ 7cm.

α

2
= sin−1

(
0.514 · c
fc · ED

)
(2.3)

Dnear =
E2

D · fc
4 · c

(2.4)

The MSAS uses synthetic aperture focusing whereby echo data from multiple posi-
tions are coherently summed to calculate each image pixel. This favours a transducer
with a larger beam spread angle in the lateral direction i.e. the direction of motion,
but still requires a narrow beam in the elevation plane. With the use of synthetic
aperture focusing each individual pixelij of an image of size i × j can be calculated
as shown in Fig. 2.4 by combining the received baseband echo data, Bij from N syn-
thetic aperture positions from which that pixel is visible and applying appropriate

Figure 2.4: Synthetic aperture focusing to calculate Pixelij from N synthetic aperture

elements.
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wires in the phantom two centimetres above and below the focal point and compare
this to the best spatial resolution that can be imaged with the device.

Spatial conformity The QA4US software defines the spatial conformity as the per-
centage difference between two measured wires in the phantom measured on the
B-mode image and the actual distance of the wires in the phantom.

Dynamic range and contrast sensitivity The QA4US software defines the dynamic
range as the number of dB’s within the 0-255 gray level range. It was measured
by acquiring multiple images of the contrast objects in a phantom. The contrast
sensitivity is defined as the SNR at 3dB as shown in (2.9)

SNRL =
|µL − µB|√
σ2
µL

+ σ2
µB

(2.9)

where: µL and µB are the ensemble mean echo levels of lesion (L) and the surround-
ing background tissue (B)29. This makes the contrast sensitivity dependent on the
dynamic range. Therefore the dynamic range needs to be corrected to one reference
dynamic range to be able to make a fair comparison of the contrast sensitivity be-
tween different ultrasound devices. All pixels in the image are multiplied according
to (2.10) to produce a corrected pixel value Pixel′ij , where Pixelij is the original pixel
intensity of a pixel, DRref is the reference dynamic range of 2.55 and DR is the mea-
sured dynamic range of the device.

Pixel′ij = Pixelij ·
DRref

DR
(2.10)

In Vivo experiments

In vivo experiments were performed to evaluate the performance of the MSAS pro-
totype in prenatal care. The local ethics committee approved the use of the MSAS
prototype on pregnant women. This was achieved by proving that the SESAS pro-
vides conformance to the FDA Track 1 standards Fetal Imaging application. Hy-
drophone measurements showed a Mechanical Index below 0.2, a Derated Spatial-
Peak Temporal-Average Intensity below 9 mWcm−1 and a Derated Spatial-Peak Pulse-
Average Intensity below 5.2 Wcm−1. The electrical safety of the system was tested
according to the NEN-EN-IEC 60601-1 of the NEN 3140. Every pregnant woman in
this evaluation study signed a written informed consent. In prenatal care ultrasound
can be used to detect maternal mortality risk factors. The performed in vivo experi-
ments focussed on biometric measurements that can be used to determine the Ges-
tational Age (GA) and growth of the fetus. In the first trimester the Crown-Rump
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Second, phantom experiments were used for quantitative comparison of the MSAS
prototype with an MFFS ultrasound device (Interson SeeMore, model 99-5901, cen-
tre frequency 3.5 MHz) . The MFFS ultrasound device makes use of a fixed focus
single element which moves inside an oil filled housing. Finally, in vivo experiments
were used to validate the use of the MSAS prototype for common measurements in
prenatal care.

Simulations

Field II27,28 was used to simulate a single element ultrasonic transducer travelling a
convex path with an angular resolution, θres, of 0.25◦ and performing a transmit- and
receive cycle at each position. For MSAS a rectangular element of 2mm (lateral) by
7mm (elevation) was simulated whereas for the MFFS simulation a circular aperture
of 15mm diameter was used together with a lens, giving similar beam characteristics
to the MFFS ultrasound device.

Phantom experiments

The image quality of the MSAS prototype and MFFS ultrasound device were eval-
uated using Quality Assurance for UltraSound (QA4US) software. This software
makes it possible to quantitatively analyse B-mode images and was used to measure
the elevation focus, spatial resolution, spatial conformity and contrast sensitivity of
each ultrasound device29.

Elevation focus The elevation direction of the ultrasound probe is perpendicular to
the displayed sector and therefore normally not visible. However, special slice thick-
ness phantoms have been developed to visualize the elevation focus using a plane
of scatterers which are positioned at an angle of 45◦. This enables the visualization
of the slice thickness as a function of the depth of the scatterers in the phantom. The
QA4US software defines the elevation focus depth as the depth where the smallest
detected slice thickness is located.

Spatial resolution The QA4US software defines the spatial resolution of an ultra-
sound device as the Full Width Half Maximum (FWHM) of the wire in the phantom
that is closest to the elevation focus. The depth of the (in-plane) transmit focus was
also set to the elevation focus depth. This will result in the best spatial resolution that
can be imaged with the device. The spatial resolution degredates outside the focal
point. This degradation was quantified by taking the average of the FWHM of the
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wires in the phantom two centimetres above and below the focal point and compare
this to the best spatial resolution that can be imaged with the device.
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ments focussed on biometric measurements that can be used to determine the Ges-
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Second, phantom experiments were used for quantitative comparison of the MSAS
prototype with an MFFS ultrasound device (Interson SeeMore, model 99-5901, cen-
tre frequency 3.5 MHz) . The MFFS ultrasound device makes use of a fixed focus
single element which moves inside an oil filled housing. Finally, in vivo experiments
were used to validate the use of the MSAS prototype for common measurements in
prenatal care.

Simulations

Field II27,28 was used to simulate a single element ultrasonic transducer travelling a
convex path with an angular resolution, θres, of 0.25◦ and performing a transmit- and
receive cycle at each position. For MSAS a rectangular element of 2mm (lateral) by
7mm (elevation) was simulated whereas for the MFFS simulation a circular aperture
of 15mm diameter was used together with a lens, giving similar beam characteristics
to the MFFS ultrasound device.

Phantom experiments

The image quality of the MSAS prototype and MFFS ultrasound device were eval-
uated using Quality Assurance for UltraSound (QA4US) software. This software
makes it possible to quantitatively analyse B-mode images and was used to measure
the elevation focus, spatial resolution, spatial conformity and contrast sensitivity of
each ultrasound device29.

Elevation focus The elevation direction of the ultrasound probe is perpendicular to
the displayed sector and therefore normally not visible. However, special slice thick-
ness phantoms have been developed to visualize the elevation focus using a plane
of scatterers which are positioned at an angle of 45◦. This enables the visualization
of the slice thickness as a function of the depth of the scatterers in the phantom. The
QA4US software defines the elevation focus depth as the depth where the smallest
detected slice thickness is located.

Spatial resolution The QA4US software defines the spatial resolution of an ultra-
sound device as the Full Width Half Maximum (FWHM) of the wire in the phantom
that is closest to the elevation focus. The depth of the (in-plane) transmit focus was
also set to the elevation focus depth. This will result in the best spatial resolution that
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Figure 2.6: Lateral resolution computed from the simulated images of point targets.

2.4.2 Phantom Experiments

Fig. 2.7 shows an example of point target data, at a depth of 10cm, extracted from
the resolution phantom experiments with the MSAS prototype. The improvements
in lateral resolution and signal to noise ratio resulting from synthetic focusing are
clearly shown.

Figure 2.7: Surface plot of a 0.1mm diameter target from a resolution phantom at a

depth of 10cm obtained using MSAS prototype. (a) Physical beam pattern (before

synthetic focusing). (b) After synthetic focusing.
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Length (CRL) of the fetus is the most reliable measurement to determine the GA.
The Head Circumference (HC) and Abdomen Circumference (AC) of the fetus can
be used in the second and third trimester to assess the growth of the fetus30.

2.4 Results

2.4.1 Simulation

Fig. 2.5 shows the results of Field II simulations to generate B-mode images of an
arrangement of ideal point targets, similar to that used in phantom experiments.
The left image shows the MSAS result and the right image shows the MFFS result.
Fig. 2.6 shows a comparison of the lateral resolution versus depth computed from
the vertical row of the images in Fig. 2.5.

Figure 2.5: Simulated images of point targets. Left: MSAS. Right: MFFS.
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Figure 2.9: Example images of the phantom contrast disks that are used for calculat-

ing the dynamic range and contrast sensitivity (left to right: 15dB, 6dB, 3dB, -3dB,

-6dB, -15dB). Top: MSAS prototype. Bottom: MFFS ultrasound device.

Table 2.2: QA4US results

Parameter MSAS MFFS
Elevation Focus [mm] 30.6 50.5
Slice thickness at elevation focus [mm] 1.08 1.2

Axial Resolution in focus [mm] 0.23 ± 0.03 0.37 ± 0.05
Axial Resolution averaged over depth [mm] 0.28 ± 0.05 0.55 ± 0.13

Lateral Resolution in focus [mm] 0.55 ± 0.02 1.25 ± 0.06
Lateral Resolution averaged over depth [mm] 0.67 ± 0.11 2.71 ± 1.40

Axial spatial conformity [%] 0.2 ± 0.18 2.0 ± 0.06

Dynamic Range [dB] 140 98
Contrast Sensitivity 1.22 2.20
Corrected Contrast Sensitivity 1.46 2.19

2.4.3 In Vivo experiments

Fig. 2.10, shows three example B-mode images of the in vivo experiments with the
MSAS prototype, one from each of the trimesters of the pregnancy. The top image
shows a side view of a fetus in the first trimester, which can be used to measure the
crown to rump length (CRL) of a fetus. The middle image shows a cross section
of the fetal head in the second trimester, which can be used to measure the head
circumference (HC) of the fetus. The bottom image shows a a cross section of the
fetal abdomen in the third trimester, which can be used to measure the abdominal
circumference (AC) of the fetus.

28 Development of a low-cost medical ultrasound scanner

Fig. 2.8 and Fig. 2.9 show B-mode images obtained in phantom experiments using
the MSAS prototype and the MFFS ultrasound device. Quantitative analysis of the
image quality from the two ultrasound devices was performed using the QA4US
tool. Table 2.2 shows the result of this analysis.

Figure 2.8: Example images of the phantom wires used for calculating spatial resolu-

tion and spatial conformity. Left: MSAS prototype. Right: MFFS ultrasound device.
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2.5 Discussion

2.5.1 Simulations

The Field II simulations, shown in Fig. 2.5 and Fig. 2.6, show that the best case lat-
eral resolution of the MSAS and MFFS approaches is similar. However it is clearly
demonstrated that the near field distortions seen on the MFFS image, due to the
complex beam shape up to the near field distance, are eliminated using the MSAS
approach and the resolution at the maximum range is also improved. Overall, the
MSAS approach achieves a much more consistent lateral resolution over the full
range of the image.

2.5.2 Phantom experiments

The MSAS prototype demonstrates superior axial and lateral resolution compared
to the MFFS ultrasound device, which is visible in Fig. 2.8 and was quantified with
the QA4US software with results shown in Table 2.2. This superior resolution be-
comes even more pronounced when the mean resolution over the full depth range is
evaluated. The MFFS ultrasound device has a large decay in lateral resolution due to
its fixed focus, single element transducer design. The mean lateral resolution of the
MFFS ultrasound device is therefore more than twice as poor as the best case reso-
lution. The spatial conformity in axial direction of the MFFS ultrasound device was
also found to be worse compared to the MSAS prototype. This may be simply due
to the poorer lateral resolution but it may also be affected by the applied frame av-
eraging or smoothing. Unfortunately, post-processing could not be turned off by the
software. After correction for dynamic range it can be seen that the contrast sensitiv-
ity of the MSAS prototype is significantly lower compared to the MFFS ultrasound
device. This is caused by the combination of the small aperture size of the transducer
element (2mm x 7mm) and compromises in the analog front end electronics, both of
which degrade the achievable SNR even after focusing.

2.5.3 In Vivo experiments

Extensive in vivo experiments have shown that it is possible to view the fetus with
the MSAS prototype in all trimesters, illustrated by the three examples in Fig. 2.10.
The relatively low contrast sensitivity of the MSAS makes it a more challenging task
to determine the exact border of the fetus in the first trimester and therefore error
bounds on CRL measurements are likely to be higher than with state-of-the-art scan-
ners. The middle image of shows that the MSAS is able to image a sharp edge of

30 Development of a low-cost medical ultrasound scanner

Figure 2.10: From top to bottom: B-mode image of a fetus in the first trimester, which

can be used to measure the CRL of the fetus. B-mode image of the head of a fetus

in the second trimester, which can be used to measure the HC. B-mode image of the

abdomen of a fetus in the third trimester, which can be used to measure the AC.
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could be also included to improve the visual quality of the images by optimising
dynamic range and reducing speckle.

2.6 Conclusion

In this paper a low component cost, monostatic synthetic aperture scanner (MSAS)
was presented with potential applications in low resource countries for the detection
of maternal risk factors. This system was designed to reduce the production costs by
replacing the multi-element piezoelectric transducer array by a single piezoelectric
element which is mechanically swept across the target scene. Since a single piezo-
electric element leads to inevitable compromises in image resolution, synthetic aper-
ture focusing was used to achieve consistently high resolution across the B-mode
image. Simulations proved that the lateral resolution of the monostatic synthetic
aperture focusing approach is superior to that of a monostatic fixed focus scanning
(MFFS) approach at almost every range. Phantom experiments, performed with a
proof-of-concept MSAS prototype, showed that it has superior axial and lateral reso-
lution compared to another single element ’low-cost’ ultrasound device that is avail-
able on the market today. However, the phantom experiments also showed that the
current MSAS design suffered from a relatively low contrast sensitivity. To validate
the performance of the MSAS in prenatal care in vivo experiments were performed.
The in vivo experiments show promising results for clinical diagnostic use of the
MSAS. Even with the lower frame rate is was possible to detect the fetus in all three
trimesters and image different parts of the fetus that are important for making bio-
metric measurements of the fetus. Therefore it can be concluded that, with further
development, the proposed design has the potential to deliver an affordable tech-
nology for developing countries to detect maternal risk factors and hopefully reduce
the number of maternal deaths in the future.
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the fetal head but limited detail of the internal soft tissue structure, again due to the
contrast sensitivity. This makes it more challenging to find internal markers which
indicate the ideal cross section of the fetal head for the HC measurement but a rea-
sonable estimate of the head circumference can still be made. In the third trimester
it proved possible to view the abdomen of the fetus, but it is more challenging to
pick out all deeper structures which are not as clearly visible due to shadowing and
the lower contrast sensitivity. Despite the lower frame rate and the lower contrast of
the MSAS, it has still proven possible to measure important fetal biometrics such as
CRL, HC and AC.

2.5.4 User experience

When designing a low-cost ultrasound devices compromises have to be made to de-
crease production costs. Like most low-cost ultrasound devices, the MSAS prototype
has relatively few parameters that can be adjusted by the user. This may make the
use of these devices in developing countries easier but it is not possible to change
them if parameters are suboptimal. A significant compromise of the MSAS proto-
type constructed was found to be the lower frame rate. This diminishes the ’real-
time’ imaging experience that experienced sonographers are accustomed to. Users
could adapt to this lower frame rate but, in combination with the low contrast sensi-
tivity, this made it more difficult and time consuming to locate the appropriate views
of a fetus for biometric measurements.

2.5.5 Improvements

The biggest scope for improvement on the MSAS design is in the contrast sensitiv-
ity of the device by increasing the received SNR. Three main approaches could be
used to obtain a higher contrast sensitivity. Firstly, a larger transducer aperture in
the elevation direction in combination with a lens to optimise the focal depth, would
increase the transmitted and received ultrasound energy. Second, a higher specifi-
cation ADC could be used to allow oversampling well above the Nyquist sampling
frequency to reduce aliasing and quantisation noise. Thirdly, there is substantial
scope to improve to the receiver amplifier to reduce noise floor. User experience
would also be improved by a higher frame rate which is possible by optimisation of
the processing software. However, careful design will be needed, harnessing ever
improving cost/performance of components, to maintain an order of magnitude re-
duction of system cost. At the time of writing only simple image post-processing
steps are performed in the MSAS software. More advanced post-processing steps
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3.1 Introduction 37

3.1 Introduction

Worldwide, 99% of all maternal deaths occur in resource-limited countries1. Ul-
trasound can be used to manage obstetric care, but too often remains out of reach
for pregnant women in resource-limited countries. There are two main reasons for
this. Firstly, ultrasound is too expensive for resource-limited countries. Secondly,
a trained sonographer is required to acquire and interpret the ultrasound images.
However, there is a severe shortage of well-trained sonographers in resource-limited
countries3–5.

The first problem could be solved with the use of low-cost ultrasound devices. Es-
timation of gestational age (GA) could be helpful in resource-limited countries31–38,
but it has never been shown how accurate fetal biometrics can be estimated with
low-cost ultrasound systems. In this study we therefore compared three low-cost
ultrasound devices to measure the head circumference (HC), abdominal circumfer-
ence (AC) and femur length (FL) by obtaining the standard planes, as described by
Verburg et al. 39. The biparietal diameter was not evaluated in this study, because
guidelines state that the HC is more reliable when the head shape is flattened or
rounded40.

The second problem could be solved by using the obstetric sweep protocol (OSP).
The OSP was introduced by DeStigter et al. 6 and consists of six predefined free-hand
sweeps over the abdomen of the pregnant women with an ultrasound transducer as
visualized in Figure 3.1. According to DeStigter et al. 6, the OSP can be taught, within
a day, to any health care worker without any prior knowledge of ultrasound, which
makes it a suitable approach for resource-limited countries.

We investigated if it is possible to estimate the GA using the OSP. “Correct assess-
ment of GA and fetal growth is essential for optimal obstetric management”39. The
GA can, for example, be used to estimate due date, to schedule prenatal care and
to estimate fetal viability. However, the OSP will most likely not contain the correct
standard plane to obtain the fetal biometrics. Therefore, we investigated whether
it is possible to accurately estimate the HC, AC and FL by manually selecting the
frame within the OSP that best resembles the standard plane. If this is possible,
computer-aided detection systems could potentially be used to automatically mea-
sure these biometrics. Such a system could make ultrasound more widely available
in resource-limited countries, because there would be no need for a trained sonog-
rapher to acquire and interpret the image to estimate the GA and monitor growth of
the fetus.

36 Comparative study of low-cost ultrasound devices

Abstract

We investigated how accurately low-cost ultrasound devices can estimate gesta-
tional age (GA) using both the standard plane and the obstetric sweep protocol
(OSP). The OSP can be taught to health care workers without prior knowledge of
ultrasound within one day and thus avoid the need to train dedicated sonographers.
Three low-cost ultrasound devices were compared with one high-end ultrasound
device. GA was estimated with the head circumference (HC), abdominal circumfer-
ence (AC) and femur length (FL) using both the standard plane and the OSP. The
results revealed that the HC, AC and FL can be used to estimate GA using low-cost
ultrasound devices in the standard plane within the inter-observer variability pre-
sented in the literature. The OSP can be used to estimate the GA by measuring the
HC and the AC, but not the FL. This study shows that it is feasible to estimate GA
in resource-limited countries with low-cost ultrasound devices using the OSP. This
makes it possible to estimate GA and assess fetal growth for pregnant women in
rural areas of resource-limited countries.
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formed by one of three sonographers (D.d.B., D.M. and A.B.), with 27, 14 and 30
years of experience as a sonographer, respectively. The routine ultrasound examina-
tions were performed between December 2016 and March 2017 at the Department
of Obstetrics and Gynecology, Radboud University Medical Center, Nijmegen, the
Netherlands. During this examination, the standard planes for obtaining the HC,
AC and FL measurements were acquired using the Voluson E10 according to the
standards of Verburg et al. 39. After completion of the examination, the OSP was per-
formed using the Voluson E10. In addition, the three standard planes and the OSP
were acquired using one of the three low-cost ultrasound devices. This resulted in
three 20-participants groups matched on body mass index of the participant and GA
of the fetus. Data were acquired at either 20 or 33 weeks GA, because these are stan-
dard time points of routine ultrasound screening for pregnant women in the Nether-
lands. Only participants with a fetus that did not show any growth abnormalities
were included in this study. All ultrasound devices were tested for electrical safety
and the SESAS was also tested on acoustic output power to ensure patient safety.
All the participants signed an informed consent form approved by the local ethics
committee. All data was anonymized according to the tenets of the Declaration of
Helsinki.

Figure 3.2 shows an example image of the standard plane for obtaining the HC,
AC and FL for four different fetuses with a GA around 20 weeks using the four
different ultrasound devices.

Figure 3.2: Example images of the standard plane. From left to right: Voluson, Mi-

crUs, SeeMore, SESAS. From top to bottom: standard plane to obtain the HC, AC and

FL.
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Figure 3.1: Visualization of the obstetric sweep protocol, consisting of six predefined

free-hand sweeps with the ultrasound transducer over the abdomen of the pregnant

woman.

3.2 Materials and Methods

3.2.1 Data acquisition

All 60 participants in this study received a routine ultrasound examination42 per-

Four different ultrasound devices were used to acquire the data for this compari-
son study: (i) the high-end Voluson E10 in combination with the RM6C transducer
(General Electric, Zipf, Austria), which can be purchased around $100,000; (ii) the
low-cost MicrUs EXT-1H in combination with the C5-2R60S-3 transducer
 ( TELEMED, Vilnius, Lithuania  ); (iii) the low-cost SeeMore USB Probe GP 3.5
MHz (Interson Medical Instruments, Pleasanton, USA), (both the MicrUs and
SeeMore are approved by the U.S. Food and Drug Administration (FDA) and are
commercially available for between $2000 and $3000); (iv) the custom developed
very low-cost SESAS (Newcastle University, Newcastle upon Tyne, United King-
dom), which production costs are around $100 and provides conformance to the
FDA Track 1 standards—Fetal Imaging application—and is described in detail else-
where41. All three low-cost ultrasound devices were connected to a laptop using
USB, thus providing a portable solution for rural areas in resource-limited countries.
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tions were performed between December 2016 and March 2017 at the Department
of Obstetrics and Gynecology, Radboud University Medical Center, Nijmegen, the
Netherlands. During this examination, the standard planes for obtaining the HC,
AC and FL measurements were acquired using the Voluson E10 according to the
standards of Verburg et al. 39. After completion of the examination, the OSP was per-
formed using the Voluson E10. In addition, the three standard planes and the OSP
were acquired using one of the three low-cost ultrasound devices. This resulted in
three 20-participants groups matched on body mass index of the participant and GA
of the fetus. Data were acquired at either 20 or 33 weeks GA, because these are stan-
dard time points of routine ultrasound screening for pregnant women in the Nether-
lands. Only participants with a fetus that did not show any growth abnormalities
were included in this study. All ultrasound devices were tested for electrical safety
and the SESAS was also tested on acoustic output power to ensure patient safety.
All the participants signed an informed consent form approved by the local ethics
committee. All data was anonymized according to the tenets of the Declaration of
Helsinki.

Figure 3.2 shows an example image of the standard plane for obtaining the HC,
AC and FL for four different fetuses with a GA around 20 weeks using the four
different ultrasound devices.

Figure 3.2: Example images of the standard plane. From left to right: Voluson, Mi-

crUs, SeeMore, SESAS. From top to bottom: standard plane to obtain the HC, AC and

FL.
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Figure 3.1: Visualization of the obstetric sweep protocol, consisting of six predefined

free-hand sweeps with the ultrasound transducer over the abdomen of the pregnant

woman.

3.2 Materials and Methods

3.2.1 Data acquisition

Four different ultrasound devices were used to acquire the data for this compari-
son study: (i) the high-end Voluson E10 in combination with the RM6C transducer
(General Electric, Zipf, Austria), which can be purchased around $100,000; (ii) the
low-cost MicrUs EXT-1H in combination with the C5-2R60S-3 transducer (Telemed
Ultrasound Medical Systems, Milan, Italy); (iii) the low-cost SeeMore USB Probe GP
3.5 MHz (Interson Medical Instruments, Pleasanton, USA), (both the MicrUs and
SeeMore are approved by the U.S. Food and Drug Administration (FDA) and are
commercially available for between $2000 and $3000); (iv) the custom developed
very low-cost SESAS (Newcastle University, Newcastle upon Tyne, United King-
dom), which production costs are around $100 and provides conformance to the
FDA Track 1 standards—Fetal Imaging application—and is described in detail else-
where41. All three low-cost ultrasound devices were connected to a laptop using
USB, thus providing a portable solution for rural areas in resource-limited countries.

All 60 participants in this study received a routine ultrasound examination42 per-
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the two frames that best resembled the standard planes to obtain the HC and AC
measurement. The HC and AC were manually annotated after these frames were
selected. The FL was annotated by selecting the ends of the femur over multiple
frames. Annotations were made at least one week after the HC, AC and FL were ob-
tained in the standard planes, to avoid a bias towards the measurements obtained in
the standard planes. During the annotation process, the sonographer was blinded to
the measurements obtained in the standard planes obtained using both the high-end
and low-cost ultrasound devices.

3.2.4 Estimation of the gestational age

The HC, AC and FL can be used to estimate the GA. The curve of Verburg et al. 39 was
used to estimate the GA from each HC, AC and FL measurement. The crown-rump
length (CRL), obtained between 8+4 weeks and 12+6 weeks, was used as the reference
GA. Only fetuses with a reference GA below 23 weeks were used to compare the GA,
because the 95% confidence interval for GA prediction using biometric parameters
becomes more than one week after 23 weeks43.

3.2.5 Comparison of the results

The biometric measurement obtained using both the standard plane and the OSP
were compared to the inter-observer variability presented in literature to determine
whether it is possible to obtain a measurement with an ultrasound device..

The 95% limits of agreement (LoA) for the GAs estimated from the HC, AC and
FL were compared to the LoA obtained from the curve of Verburg et al. 39. When the
LoA for the GA fell within the LoA of the curve of Verburg et al. 39, we concluded
that it was possible to estimate the GA with an ultrasound device. The LoA for the
GAs were calculated using the formula of Hayes and Krippendorff 44. The LoA of
the curves of Verburg et al. 39 were caused by differences in fetal growth during the
pregnancy and inter-observer variability of the sonographers. The standard devia-
tion (SD) reported by Verburg et al. 39 was used to determine the LoA for the HC, AC
and FL. The SD reported by Verburg et al. 39 was dependent on the GA, so the GA
determined by the CRL was used to determine the SD for the participants scanned
with each ultrasound device.

3.2.6 Statistical analysis

Paired statistical tests were performed to test if the measures (HC, AC and FL) ob-
tained in either the standard plane or utilizing the OSP were significantly different
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Table 3.1: Preset per ultrasound device for the acquisition of the OSP

Voluson E10 MicrUs SeeMore SESAS
Imaging depth 15 cm 15 cm 15 cm 15 cm
Focal depth 8 cm 8.5 cm 7.5 cm Full depth∗
Imaging Angle 65◦ 65◦ 90◦ 50◦

Frame rate 33 Hz 20 Hz 15 Hz 4 Hz
Center frequency 4 MHz 3.5 MHz 3.5 MHz 4.2 MHz

Note: ∗This device uses synthetic aperture focusing41

To make the comparison between the different ultrasound devices as fair as possi-
ble, a pre-set was defined for each device to minimize the influence of the acquisition
protocol on the results. The settings of this pre-set per device can be found in Table
3.1. Note that not all parameters are the same, because some parameters cannot be
changed for the low-cost ultrasound devices. The sonographer was asked to acquire
around 100 frames per sweep, but since these sweeps were made in free-hand mode,
the number of acquired frames per sweep varied. It was not possible to acquire 100
frames with the SESAS, as this device has a frame rate of only 4 Hz. Instead, the
sonographer was asked to acquire the sweep with the SESAS within seven to ten
seconds, to limit possible motion of the fetus during the acquisition of the OSP. This
resulted in 30 to 40 frames per sweep for this device.

3.2.2 Biometric measurements obtained in the standard plane

Measurements of the HC, AC and FL, obtained in the standard planes using the high-
end ultrasound device were determined during the routine ultrasound examination
and were used as a reference to compare the measurements of the three low-cost ul-
trasound devices obtained in the standard plane. The HC, AC and FL measurements
obtained in the standard planes using the low-cost ultrasound devices were man-
ually determined by one experienced sonographer (D.d.B.). These measurements
were obtained at least one week after the routine ultrasound examination, to avoid
a bias towards the measurements obtained using the high-end device. During this
process, the sonographer was blinded to the measurement obtained using the high-
end device.

3.2.3 Biometric measurements obtained utilizing the OSP

The OSP data will most likely not contain the standard plane normally used to mea-
sure the HC, AC and FL. Instead the sonographer selected, from the sweep data,
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the two frames that best resembled the standard planes to obtain the HC and AC
measurement. The HC and AC were manually annotated after these frames were
selected. The FL was annotated by selecting the ends of the femur over multiple
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becomes more than one week after 23 weeks43.
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were compared to the inter-observer variability presented in literature to determine
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tion (SD) reported by Verburg et al. 39 was used to determine the LoA for the HC, AC
and FL. The SD reported by Verburg et al. 39 was dependent on the GA, so the GA
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tained in either the standard plane or utilizing the OSP were significantly different
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Note: ∗This device uses synthetic aperture focusing41

To make the comparison between the different ultrasound devices as fair as possi-
ble, a pre-set was defined for each device to minimize the influence of the acquisition
protocol on the results. The settings of this pre-set per device can be found in Table
3.1. Note that not all parameters are the same, because some parameters cannot be
changed for the low-cost ultrasound devices. The sonographer was asked to acquire
around 100 frames per sweep, but since these sweeps were made in free-hand mode,
the number of acquired frames per sweep varied. It was not possible to acquire 100
frames with the SESAS, as this device has a frame rate of only 4 Hz. Instead, the
sonographer was asked to acquire the sweep with the SESAS within seven to ten
seconds, to limit possible motion of the fetus during the acquisition of the OSP. This
resulted in 30 to 40 frames per sweep for this device.

3.2.2 Biometric measurements obtained in the standard plane

Measurements of the HC, AC and FL, obtained in the standard planes using the high-
end ultrasound device were determined during the routine ultrasound examination
and were used as a reference to compare the measurements of the three low-cost ul-
trasound devices obtained in the standard plane. The HC, AC and FL measurements
obtained in the standard planes using the low-cost ultrasound devices were man-
ually determined by one experienced sonographer (D.d.B.). These measurements
were obtained at least one week after the routine ultrasound examination, to avoid
a bias towards the measurements obtained using the high-end device. During this
process, the sonographer was blinded to the measurement obtained using the high-
end device.

3.2.3 Biometric measurements obtained utilizing the OSP

The OSP data will most likely not contain the standard plane normally used to mea-
sure the HC, AC and FL. Instead the sonographer selected, from the sweep data,
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the femur. A total of 45 participants (15 per low-cost device) had a GA below 23
weeks according to the CRL measurement in the first trimester and were therefore
included in the comparison of the GA.

Table 3.2: Maternal age and body mass index of participants and GA of the fetus

All (N=60) MicrUs (N=20) SeeMore (N=20) SESAS (N=20)
Maternal age (years) 31.1±0.1 31.7±0.2 29.9±0.2 31.7±0.2
Body mass index 23.2±2.5 23.0±2.4 22.8±2.5 23.9±2.6
Gestational age (weeks) 23.3±5.3 23.3±5.4 23.3±5.3 23.5±5.4

3.3.1 Biometric measurements obtained in the standard plane

Figure 3.3 shows a scatterplot for the HC, AC and FL measurements obtained in
the standard plane. The x-axis shows the reference measurement obtained using
Voluson E10 in the standard plane. The y-axis shows the measurement obtained
using the three low-cost ultrasound devices in the standard plane. The legend shows
how many measurements were obtained using each ultrasound device.

Table 3.3 lists the difference (mean ± SD) between the measurements obtained
in the standard plane using the Voluson E10 and the measurements obtained in the
standard plane using the three low-cost devices. The differences were computed in
millimeter and in percentage. All three low-cost devices significantly overestimated
the HC. The SeeMore also significantly overestimated the AC. The SeeMore and Mi-
crUs significantly underestimated the FL.

Table 3.3: Mean and SD difference of the HC, AC and FL in millimeter and per-

centage between the Voluson obtained in the standard plane and the three low-cost

ultrasound devices obtained in the standard plane

Mean±SD (mm) Mean±SD (%)
HC AC FL HC AC FL

SESAS 8.5±10.3∗† 4.3±12.3 -1.2±3.4 4.0±4.7∗† 3.0±7.3 -2.6±7.0
SeeMore 10.5±3.7∗† 8.4±6.8∗† -1.6±1.9∗ 5.3±2.2∗† 4.7±3.3∗† -3.7±4.4∗
MicrUs 2.4±4.0∗ 0.6±7.4 -2.2±2.0∗ 1.1±1.8∗ 0.6±4.0 -5.5±5.3∗

Note: ∗significantly different compared to the Voluson in the standard plane, †significantly different

compared to the MicrUs in the standard plane
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(p<0.05) from the measurement obtained in the standard plane using the Voluson
E10. A paired t-test was used when the data was normally distributed according to
the Shapiro-Wilk test. When this was not the case, the Wilcoxon Signed Rank test
was used. The same paired statistical tests were performed to test if the GA esti-
mated from the HC, AC or FL obtained in either the standard plane or utilizing the
OSP significantly differed (p<0.05) from the GA estimated from the CRL. The paired
statistical tests were also used to test if the results between the low-cost ultrasound
devices and the Voluson E10 were significantly different. Unpaired statistical tests
were performed to test if the results between the low-cost ultrasound devices sig-
nificantly differed (p<0.05). An independent t-test was used when the data were
normally distributed according to the Shapiro-Wilk test. When this was not the case,
the Mann-Whitney U-Test was used.

3.3 Results

A total of 60 participants were included in this study. Table 3.2 lists maternal age
and body mass index for the participants and the GA of the fetus. There are no
significant differences between the groups. A total of 348 biometric measurements
were obtained in the standard planes. The sonographer could measure the HC, AC
and FL in the standard plane for all participants using the Voluson, MicrUs and
SeeMore. With the use of the SESAS, the sonographer could measure the HC, AC
and FL in 19, 17 and 12 participants, respectively. The AC of one fetus was difficult
to measure using the Voluson, due to the position of the fetus (GA of 32+3 weeks).
The AC of this fetus measured using the MircUs resulted in an outlier which was
excluded from the results. A total of 339 measurements were obtained utilizing the
OSP. The sonographer could measure the HC in all participants using the MicrUs,
SeeMore and SESAS. One HC could not be measured using the Voluson, because
the fetus was low-lying and the OSP was acquired too high on the abdomen. The
sonographer could measure the AC in all participants using the Voluson and the
MicrUs. One AC could not be measured using the SeeMore, because it did not fall
completely within the FOV of any of the six sweeps due to the small footprint of
the transducer. Three ACs could not be measured using the SESAS, because the
number of frames per sweep in combination with the lower signal to noise ratio
made it impossible to detect the borders of the fetal abdomen. The sonographer
could measure the FL in all participants using the SeeMore and Voluson. One FL
could not be measured using the MicrUs, because the femur was not visible due to
the position of the fetus (GA of 32+5 weeks). Fifteen FLs could not be measured using
the SESAS, because the number of frames per sweep was too low to be able to detect
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the femur. A total of 45 participants (15 per low-cost device) had a GA below 23
weeks according to the CRL measurement in the first trimester and were therefore
included in the comparison of the GA.
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3.3.1 Biometric measurements obtained in the standard plane

Figure 3.3 shows a scatterplot for the HC, AC and FL measurements obtained in
the standard plane. The x-axis shows the reference measurement obtained using
Voluson E10 in the standard plane. The y-axis shows the measurement obtained
using the three low-cost ultrasound devices in the standard plane. The legend shows
how many measurements were obtained using each ultrasound device.

Table 3.3 lists the difference (mean ± SD) between the measurements obtained
in the standard plane using the Voluson E10 and the measurements obtained in the
standard plane using the three low-cost devices. The differences were computed in
millimeter and in percentage. All three low-cost devices significantly overestimated
the HC. The SeeMore also significantly overestimated the AC. The SeeMore and Mi-
crUs significantly underestimated the FL.
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(p<0.05) from the measurement obtained in the standard plane using the Voluson
E10. A paired t-test was used when the data was normally distributed according to
the Shapiro-Wilk test. When this was not the case, the Wilcoxon Signed Rank test
was used. The same paired statistical tests were performed to test if the GA esti-
mated from the HC, AC or FL obtained in either the standard plane or utilizing the
OSP significantly differed (p<0.05) from the GA estimated from the CRL. The paired
statistical tests were also used to test if the results between the low-cost ultrasound
devices and the Voluson E10 were significantly different. Unpaired statistical tests
were performed to test if the results between the low-cost ultrasound devices sig-
nificantly differed (p<0.05). An independent t-test was used when the data were
normally distributed according to the Shapiro-Wilk test. When this was not the case,
the Mann-Whitney U-Test was used.

3.3 Results

A total of 60 participants were included in this study. Table 3.2 lists maternal age
and body mass index for the participants and the GA of the fetus. There are no
significant differences between the groups. A total of 348 biometric measurements
were obtained in the standard planes. The sonographer could measure the HC, AC
and FL in the standard plane for all participants using the Voluson, MicrUs and
SeeMore. With the use of the SESAS, the sonographer could measure the HC, AC
and FL in 19, 17 and 12 participants, respectively. The AC of one fetus was difficult
to measure using the Voluson, due to the position of the fetus (GA of 32+3 weeks).
The AC of this fetus measured using the MircUs resulted in an outlier which was
excluded from the results. A total of 339 measurements were obtained utilizing the
OSP. The sonographer could measure the HC in all participants using the MicrUs,
SeeMore and SESAS. One HC could not be measured using the Voluson, because
the fetus was low-lying and the OSP was acquired too high on the abdomen. The
sonographer could measure the AC in all participants using the Voluson and the
MicrUs. One AC could not be measured using the SeeMore, because it did not fall
completely within the FOV of any of the six sweeps due to the small footprint of
the transducer. Three ACs could not be measured using the SESAS, because the
number of frames per sweep in combination with the lower signal to noise ratio
made it impossible to detect the borders of the fetal abdomen. The sonographer
could measure the FL in all participants using the SeeMore and Voluson. One FL
could not be measured using the MicrUs, because the femur was not visible due to
the position of the fetus (GA of 32+5 weeks). Fifteen FLs could not be measured using
the SESAS, because the number of frames per sweep was too low to be able to detect
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Figure 3.4 shows a scatterplot of GA estimates based on the HC, AC and FL mea-
surements obtained in the standard plane. The x-axis shows the reference GA esti-
mated from the CRL measurement in the first trimester. The y-axis shows the GA
estimated from the measurement obtained using all four ultrasound devices in the
standard plane. The legend shows how many measurements were obtained using
each ultrasound device.

On the left side of Table 3.4 are the LoA for the GA estimated from the measure-
ments obtained in the standard plane using all four ultrasound devices. On the right
side of Table 3.4 are the LoA for the GA estimated with the Verburg curve for the
same participant groups. The GA estimated from the HC using the low-cost ultra-
sound devices is significantly higher than the GA estimated from the CRL. The GA
estimated from the AC is significantly higher for all four ultrasound devices than the
GA estimated from the CRL. The GA estimated from the FL using the SeeMore and
MicrUs are significantly lower compared to the GA estimated from the FL using the
Voluson E10 and the CRL.

Table 3.4: Left side: limits of agreement (LoA) for the GA estimated from the HC, AC

and FL using the ultrasound devices obtained in the standard plane compared to the

GA estimated from the CRL measurement. Right side: LoA for the curve of Verburg

et al. 39 for each device

LoA in the standard plane (days) LoA of Verburg curve (days)
HC AC FL HC AC FL

SESAS -7.4 to 15.8∗§ -5.9 to 21.8∗† -15.1 to 14.4 -6.6 to 6.7 -9.3 to 9.4 -8.4 to 8.7
SeeMore -1.0 to 11.4∗§ -4.1 to 11.3∗§ -10.9 to 4.5∗§ -6.6 to 6.7 -9.3 to 9.4 -8.4 to 8.6
MicrUs -5.9 to 11.5∗ -5.7 to 12.8∗ -14.4 to 6.0∗§ -6.7 to 6.8 -9.4 to 9.5 -8.5 to 8.7
Voluson -5.4 to 6.7 -6.1 to 9.5∗ -5.0 to 4.8 -6.6 to 6.7 -9.4 to 9.4 -8.4 to 8.7

Note: ∗significantly different from GA estimated from CRL, †significantly different from GA estimated using the

MicrUs in the standard plane, ‡significantly different from GA estimated using the SeeMore in the standard plane,

§significantly different from GA estimated using the Voluson in the standard plane

3.3.2 Biometric measurements obtained utilizing the OSP

Figure 3.5 shows a scatterplot for the HC, AC and FL measurement measurements
obtained utilizing the OSP. The x-axis shows the reference measurement obtained
using Voluson in the standard plane. The y-axis shows the measurement obtained
using all four ultrasound devices utilizing the OSP. The legend shows how many
measurements were obtained using each ultrasound device.
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Figure 3.4 shows a scatterplot of GA estimates based on the HC, AC and FL mea-
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side of Table 3.4 are the LoA for the GA estimated with the Verburg curve for the
same participant groups. The GA estimated from the HC using the low-cost ultra-
sound devices is significantly higher than the GA estimated from the CRL. The GA
estimated from the AC is significantly higher for all four ultrasound devices than the
GA estimated from the CRL. The GA estimated from the FL using the SeeMore and
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Voluson E10 and the CRL.
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§significantly different from GA estimated using the Voluson in the standard plane

3.3.2 Biometric measurements obtained utilizing the OSP

Figure 3.5 shows a scatterplot for the HC, AC and FL measurement measurements
obtained utilizing the OSP. The x-axis shows the reference measurement obtained
using Voluson in the standard plane. The y-axis shows the measurement obtained
using all four ultrasound devices utilizing the OSP. The legend shows how many
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Table 3.5 lists the differences (mean ± SD) between the measurements obtained in
the standard plane using the Voluson E10 and the measurements obtained utilizing
the OSP using all four ultrasound devices. The differences were computed in mil-
limeter and in percentage. The SESAS significantly overestimated the HC compared
to the HC obtained in the standard plane using the Voluson E10. The mean differ-
ence in HC using the SESAS is significantly higher compared to the mean difference
in HC using the other three ultrasound devices. The SESAS, SeeMore and Voluson
significantly overestimated the AC compared to the AC obtained in the standard
plane using the Voluson E10. The mean difference in AC using the SeeMore is sig-
nificantly higher compared to the mean difference in AC using the MicrUs and the
Voluson E10.

Table 3.5: Mean and SD difference of the HC, AC and FL in millimeter and per-

centage between the Voluson obtained in the standard plane and the three low-cost

ultrasound devices obtained utilizing the OSP

Mean±SD (mm) Mean±SD (%)
HC AC FL HC AC FL

SESAS 13.7±8.7∗†‡§ 8.7±12.6∗ -0.8±7.0 7.1±4.9∗†‡§ 5.7±7.5∗ -3.0±20.5
SeeMore 2.2±9.5 12.7±8.7∗†§ -1.5±3.8 1.0±4.4 7.4±5.2∗†§ -3.4±10.3
MicrUs -2.3±6.6 2.4±7.7 -0.4±5.4 -1.1±3.4 1.6±3.9 1.0±13.3
Voluson 0.4±9.9 3.3±10.1∗ 0.1±6.3 0.6±4.3 2.0±4.9∗ 0.8±15.8

Note: ∗significantly different compared to the Voluson in the standard plane, †significantly different compared to

the MicrUs utilizing the OSP, ‡significantly different compared to the SeeMore utilizing the OSP, §significantly

different compared to the Voluson utilizing the OSP

Figure 3.6 shows a scatterplot for GA estimation obtained from the HC, AC and
FL measurements obtained utilizing the OSP. The x-axis shows the reference GA es-
timated from the CRL measurement in the first trimester. The y-axis shows the GA
estimated from the measurement obtained using all four ultrasound devices utiliz-
ing the OSP. The legend shows how many measurements were obtained using each
ultrasound device.

On the left side of Table 3.6 are the LoA for the GA estimated from the measure-
ments obtained utilizing the OSP using all four ultrasound devices. On the right
side of Table 3.6 are the LoA for the GA estimated with the Verburg curve for the
same groups. The GA estimated from the HC utilizing the OSP using the SESAS is
significantly worse compared to the GA estimated from the CRL and using the other
three ultrasound device utilizing the OSP. The GA estimated from the CRL is signif-
icantly different from the GA estimated from the AC utilizing the OSP for all four
ultrasound devices.
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Table 3.5 lists the differences (mean ± SD) between the measurements obtained in
the standard plane using the Voluson E10 and the measurements obtained utilizing
the OSP using all four ultrasound devices. The differences were computed in mil-
limeter and in percentage. The SESAS significantly overestimated the HC compared
to the HC obtained in the standard plane using the Voluson E10. The mean differ-
ence in HC using the SESAS is significantly higher compared to the mean difference
in HC using the other three ultrasound devices. The SESAS, SeeMore and Voluson
significantly overestimated the AC compared to the AC obtained in the standard
plane using the Voluson E10. The mean difference in AC using the SeeMore is sig-
nificantly higher compared to the mean difference in AC using the MicrUs and the
Voluson E10.
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timated from the CRL measurement in the first trimester. The y-axis shows the GA
estimated from the measurement obtained using all four ultrasound devices utiliz-
ing the OSP. The legend shows how many measurements were obtained using each
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ments obtained utilizing the OSP using all four ultrasound devices. On the right
side of Table 3.6 are the LoA for the GA estimated with the Verburg curve for the
same groups. The GA estimated from the HC utilizing the OSP using the SESAS is
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3.4 Discussion

We have shown the feasibility of measuring the HC, AC and FL with low-cost ultra-
sound devices using both standard planes and OSP. The results indicate that the HC,
AC and FL measurements obtained in the standard planes with the low-cost ultra-
sound devices are similar to the inter-observer variability presented in the literature.
The results also indicate that it is possible to measure the HC and AC utilizing the
OSP to estimate GA.

3.4.1 Biometric measurements obtained in the standard plane

The HC was overestimated using all three low-cost devices in the standard plane.
This could be caused by the lower image quality, which made it more difficult to de-
termine the correct standard plane and accurately delineate the HC. The difference
between the MicrUs and the reference was only 2.4 mm (1.1%), which is significantly
better compared to the HC measured with the SESAS and SeeMore and falls within
inter-observer variability presented in Table 3.7. Due to this overestimation, the up-
per limit of the LoA for GA estimated using the low-cost devices was increased,
while the LoA interval remained close to the 13.3 days of the Verburg curve.

The AC measured using the MicrUs and SeeMore show similar results compared
to the inter-observer variability presented in the literature, which indicates that it is
possible to measure the AC with these low-cost devices. The LoA interval of the GA
was 15.4 and 18.5 days for the SeeMore and MicrUs, which is smaller compared to
the LoA interval of the Verburg curve, but the estimated GA from the AC was signifi-
cantly higher compared to the GA estimated from the CRL for all four devices. Since
the AC was also overestimated with the Voluson E10, we conclude that the average
AC of the fetuses in this study population was larger compared to the population
average. The AC could not be measured in three of the twenty participants using
the SESAS and the LoA interval for the estimated GA for the remaining participants
was 27.7 days, which is larger compared to the LoA interval of the Verburg curve.

It was not possible to measure the FL in the standard plane using the SESAS in
eight of the twenty participants. This was caused by low frame rate of the SESAS,
which made it very difficult to image the femur of a moving fetus. The GA estimated
from the FL using the SeeMore and MicrUs was significantly lower compared to the
GA estimated from the FL using the Voluson E10. This indicates that these two low-
cost devices underestimate the FL and therefore underestimates the GA. The results
show that the LoA interval therefore increases, but this increase is only three days
compared to the LoA interval of the Verburg curve. Therefore, we conclude that the
FL can be measured using the SeeMore and MicrUs.
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Table 3.6: Left side: limits of agreement (LoA) for the GA estimated from the HC,

AC and FL using the ultrasound devices obtained utilizing the OSP compared to the

GA estimated from the CRL measurement. Right side: LoA for the curve of Verburg

et al. 39 for each device

LoA in the standard plane (days) LoA of Verburg curve (days)
HC AC FL HC AC FL

SESAS -0.3 to 17.5∗†‡§ -5.7 to 26.9∗†§ -48.5 to 44.8 -6.6 to 6.7 -9.3 to 9.4 -8.5 to 8.7
SeeMore -9.1 to 9.7 -5.9 to 18.5∗§ -22.8 to 16.9 -6.6 to 6.7 -9.3 to 9.4 -8.4 to 8.6
MicrUs -10.4 to 11.6 -0.5 to 9.4∗ -17.2 to 24.8 -6.7 to 6.8 -9.4 to 9.5 -8.5 to 8.7
Voluson -7.5 to 11.4∗† -7.1 to 15.2∗ -27.7 to 31.7∗ -6.6 to 6.7 -9.4 to 9.4 -8.4 to 8.7

Note: ∗significantly different from GA estimated from CRL †significantly different from GA estimated using MicrUs

utilizing the OSP ‡significantly different from GA estimated using SeeMore utilizing the OSP §significantly different

from GA estimated using Voluson utilizing the OSP

3.3.3 Comparison to literature

Table 3.7 shows a literature overview of the inter-observer variability for the HC,
AC and FL measurements. Some cells are empty, because some papers present the
results in millimeters and some in percentages. In addition, not all papers show
results of all three biometric measurements.

Table 3.7: Literature overview of the inter-observer variability for the HC, AC and FL

Mean±SD (mm) Mean±SD (%)
N HC AC FL HC AC FL

Sarmandal et al. 45 22 -0.1±8.9 -0.6±7.7 -1.3±2.3
Perni et al. 46 122 0.1±5.6 1.0±11.6 0.4±1.9
Rijken et al. 47 90 -1.6±4.8 -0.6±5.7 -0.4±1.4
Lima et al. 48 102 0.0±13.0 0.0±1.1
Chang et al. 49 40 -1.6±5.8 -1.9±7.5 -0.1±1.4 -0.5±1.9 -0.5±2.4 -0.2±2.2
Sarris et al. 50 175 0.9±6.1 0.9±10.7 0.0±2.2 0.5±2.5 1.2±2.9 0.0±5.7
Verburg et al. 51 20 1.3±5.4 0.3±5.6 -1.4±5.1
Napolitano et al. 52 100 -0.8±2.5
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biometric measurements. In the future, computer aided detection systems could be
used to automatically measure these biometrics. This would obviate the need of a
well-trained sonographer to both obtain and interpret the data for estimation of GA
and monitoring fetal growth.

3.5 Conclusions

We show that it is possible to accurately estimate GA with low-cost ultrasound de-
vices using both the standard plane and the OSP. The results indicate that a trained
sonographer was able to determine the standard plane and measure the HC, AC and
FL to estimate GA using the SeeMore and MicrUs within the inter-observer variabil-
ity presented in literature. The SESAS can be used to measure the HC and AC to
estimate GA, but showed a larger standard deviation. This study also shows that the
OSP can be used to accurately estimate GA by measuring the HC and AC, but not
the FL. Since the OSP can be taught to health care workers without prior knowledge
of ultrasound within one day, it is feasible to estimate GA and assess fetal growth
with low-cost ultrasound devices without training dedicated sonographers. In the
future, computer-aided detection systems could be used to automatically measure
these biometrics. This would obviate the need of a well-trained sonographer to both
obtain and interpret the data for estimation of GA and monitor fetal growth.

50 Comparative study of low-cost ultrasound devices

3.4.2 Biometric measurements obtained utilizing the OSP

It is possible to measure the HC using the SeeMore, MicrUs and Voluson E10 utiliz-
ing the OSP, because the difference between the HC measured utilizing the OSP and
the HC measured using the Voluson E10 in the standard plane is close to the inter-
observer variability presented in literature. The LoA interval for the HC obtained
utilizing the OSP was 22.0 days, which is nine days larger compared to the 13.3 days
of the Verburg curve.

The AC obtained utilizing the OSP is significantly higher compared to the AC
measured using the Voluson E10 in the standard plane. The OSP will most likely
not contain the standard plane and will therefore result in an obliquely section of
the abdomen. This results in a larger AC compared to the standard plane, but the
AC measured with the Voluson E10 and MicrUs utilizing the OSP still fall within the
inter-observer variability. The LoA interval for the AC obtained utilizing the OSP
was 24.4 days, which is six days larger compared to the 18.8 days of the Verburg
curve.

The SESAS could not be used to accurately measure the HC and AC utilizing
the OSP. This was caused by the limited number of frames within the OSP data of
the SESAS in combination with the lower contrast sensitivity, which made it more
difficult to select the correct frame to obtain an accurate measurement.

The results indicate that it was not possible to accurately measure the FL utilizing
the OSP. The OSP will most likely not contain the standard plane to measure the FL.
A random cross section through the femur bone will differ substantially from the FL
measured in the standard plane and will therefore not give an accurate estimation of
the FL.

3.4.3 Study limitations

The GA of the acquired data ranged from 18+6 to 33+0 weeks, so the feasibility for
measuring the HC and AC utilizing the OSP in the first trimester could not be in-
vestigated. Data from the first trimester would be required for this, but it should be
noted that most women in resource-limited countries will not receive an ultrasound
examination in the first trimester of their pregnancy.

3.4.4 Clinical implications

The results show that the OSP can be used to measure the HC and AC for estimation
of GA with the use of low-cost ultrasound devices. In this work, a well-trained
sonographer was still required to interpret the OSP data and manually obtain the
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4.1 Introduction

Ultrasound imaging is widely used for screening and monitoring of pregnant women,
since it is a low-cost, real-time and non-invasive imaging method. However, acqui-
sition of ultrasound images is operator-dependent and the images are characterized
by attenuation and speckle and may contain artifacts such as shadows and rever-
berations, making their interpretation complex. During the ultrasound screening
examination, biometric measurements of the fetus such as the crown-rump length
(CRL) and the head circumference (HC) are often computed to determine the gesta-
tional age (GA) and to monitor growth of the fetus. The CRL is the most accurate
measurement for estimating the GA of the fetus between 8 weeks and 4 days (com-
monly noted as: 8+4 weeks) and 12+6 weeks. After 13 weeks, the HC is used the most
accurate measurement to determine the GA, because it is not possible to accurately
measure the CRL anymore. The guidelines state that HC should be measured in a
transverse section of the head with a central midline echo, interrupted in the anterior
third by the cavity of the septum pellucidum with the anterior and posterior horns
of the lateral ventricles in view39. The biometric measurements are obtained man-
ually, which leads to inter- and intra-observer variability. An accurate automated
system could reduce measuring time and variability, because it does not suffer from
intra-observer variability. Worldwide, 99% of all maternal deaths occur in develop-
ing countries. Skilled care before, during and after childbirth can save the lives of
women and newborn babies1. Unfortunately, there is still a severe shortage of well-
trained sonographers in low resource settings. This keeps ultrasound screening out
of reach for most pregnant women in these countries3. An automated system could
assist inexperienced human observers in obtaining an accurate measurement. In this
work, we focus on measuring the HC because this measurement can be used to de-
termine the GA and monitor growth of the fetus. In addition, the fetal head is more
easily detectable compared to the fetal abdomen.

Systems for automatic HC measurement have been presented using random-
ized Hough transform53,54, Haar-Like features55–58, multilevel thresholding59, cir-
cular shortest paths60, boundary fragment models61, semi-supervised patch based
graphs62, active contouring63,64, intensity based features65 and texton based features66.
Although these methods show promising results, they were evaluated on a relatively
small amount of data (10 to 175 test images). Furthermore, none of these papers used
images of fetuses from all trimesters of pregnancy. We present a system that was de-
veloped using 999 ultrasound images and evaluated on a large independent test set
of 335 ultrasound images from all trimesters. The presented quantification system
was designed to be as fast and robust as possible and the results were compared

54 Automated measurement of fetal head circumference

Abstract

In this chapter we present a computer aided detection (CAD) system for automated
measurement of the fetal head circumference (HC) in 2D ultrasound images for all
trimesters of the pregnancy. The HC can be used to estimate the gestational age and
monitor growth of the fetus. Automated HC assessment could be valuable in devel-
oping countries, where there is a severe shortage of trained sonographers. The CAD
system consists of two steps: First, Haar-like features were computed from the ul-
trasound images to train a random forest classifier to locate the fetal skull. Secondly,
the HC was extracted using Hough transform, dynamic programming and an ellipse
fit. The CAD system was trained on 999 images and validated on an independent
test set of 335 images from all trimesters. The test set was manually annotated by
an experienced sonographer and a medical researcher. The reference gestational age
(GA) was estimated using the crown-rump length measurement (CRL). The mean
difference between the reference GA and the GA estimated by the experienced sono-
grapher was 0.8 ± 2.6, −0.0 ± 4.6 and 1.9 ± 11.0 days for the first, second and third
trimester, respectively. The mean difference between the reference GA and the GA
estimated by the medical researcher was 1.6± 2.7, 2.0± 4.8 and 3.9± 13.7 days. The
mean difference between the reference GA and the GA estimated by the CAD sys-
tem was 0.6 ± 4.3, 0.4 ± 4.7 and 2.5 ± 12.4 days. The results show that the CAD
system performs comparable to an experienced sonographer. The presented system
shows similar or superior results compared to systems published in literature. This
is the first automated system for HC assessment evaluated on a large test set which
contained data of all trimesters of the pregnancy.
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4.1 Introduction
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was designed to be as fast and robust as possible and the results were compared
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Abstract

In this chapter we present a computer aided detection (CAD) system for automated
measurement of the fetal head circumference (HC) in 2D ultrasound images for all
trimesters of the pregnancy. The HC can be used to estimate the gestational age and
monitor growth of the fetus. Automated HC assessment could be valuable in devel-
oping countries, where there is a severe shortage of trained sonographers. The CAD
system consists of two steps: First, Haar-like features were computed from the ul-
trasound images to train a random forest classifier to locate the fetal skull. Secondly,
the HC was extracted using Hough transform, dynamic programming and an ellipse
fit. The CAD system was trained on 999 images and validated on an independent
test set of 335 images from all trimesters. The test set was manually annotated by
an experienced sonographer and a medical researcher. The reference gestational age
(GA) was estimated using the crown-rump length measurement (CRL). The mean
difference between the reference GA and the GA estimated by the experienced sono-
grapher was 0.8 ± 2.6, −0.0 ± 4.6 and 1.9 ± 11.0 days for the first, second and third
trimester, respectively. The mean difference between the reference GA and the GA
estimated by the medical researcher was 1.6± 2.7, 2.0± 4.8 and 3.9± 13.7 days. The
mean difference between the reference GA and the GA estimated by the CAD sys-
tem was 0.6 ± 4.3, 0.4 ± 4.7 and 2.5 ± 12.4 days. The results show that the CAD
system performs comparable to an experienced sonographer. The presented system
shows similar or superior results compared to systems published in literature. This
is the first automated system for HC assessment evaluated on a large test set which
contained data of all trimesters of the pregnancy.
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justments in the ultrasound settings by the sonographer (depth settings and amount
of zoom are routinely varied during the examination) to account for the different
sizes of the fetuses. Fig 4.1 shows example ultrasound images from each trimester.
The distribution of the GA in this study is shown in Fig 4.2. Most data were acquired
after 12 and 20 weeks of pregnancy, since these are standard time points of routine ul-
trasound screening for pregnant women in the Netherlands. During each exam, the
sonographer manually annotated the HC. This was done by drawing an ellipse that
best fits the circumference of the head. Fig 4.2 also shows the comparison between
the distribution of the HC and the growth curve of Verburg et al. 39. The reference
GA was determined with a CRL measurement between 20 mm (8+4 weeks) and 68
mm (12+6 weeks). All the HCs that fell outside the 3-97 percent confidence interval of
the curve of Verburg et al. 39 were individually checked to ensure no mistakes were
made during data collection.

The data was randomly divided into a training set and a test set of 75 percent
and 25 percent, respectively. The GAs were proportionally balanced between the
data sets as shown in Table 4.1. All images that were made during one echographic
examination were assigned to either the training or the test set. An independent
data set of HC annotations of the images in the test set was created by TLAvdH,
a medical researcher who has a technical background in ultrasound imaging and
received training by an experienced sonographer in measuring the HC.
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to the methods presented in literature. A complete overview of the comparison be-
tween our method and previous publications is presented in Section 4.4.7.

4.2 Materials and Methods

4.2.1 Data

A total of 1334 two-dimensional (2D) ultrasound images of the HC were collected
from the database of the Department of Obstetrics of the Radboud University Med-
ical Center, Nijmegen, the Netherlands. The ultrasound images were acquired from
551 pregnant women who received a routine ultrasound screening exam between
May 2014 and May 2015. Only fetuses that did not exhibit any growth abnormali-
ties were included in this study. Images were acquired by experienced sonographers
using either the Voluson E8 or the Voluson 730 ultrasound device (General Electric,
Austria). The local ethics committee (CMO Arnhem-Nijmegen) approved the col-
lection and use of this data for this study. Due to the retrospective data collection,
informed consent was waived. All data was anonymized according to the tenets of
the Declaration of Helsinki.

The size of each 2D ultrasound image was 800 by 540 pixels with a pixel size
ranging from 0.052 to 0.326 mm. This large variation in pixel size is a result of ad-

Figure 4.1: Example ultrasound images. From top to bottom: without annotation and

with annotation in red. From left to right: first trimester with an HC of 65.1 mm (pixel

size of 0.06 mm), second trimester with an HC of 167.9 mm (pixel size of 0.12 mm)

and third trimester with an HC of 278.4 mm (pixel size of 0.24 mm). Note that the

skull is not yet visible as a bright structure in the first trimester.
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the curve of Verburg et al. 39 were individually checked to ensure no mistakes were
made during data collection.
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data sets as shown in Table 4.1. All images that were made during one echographic
examination were assigned to either the training or the test set. An independent
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to the methods presented in literature. A complete overview of the comparison be-
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4.2 Materials and Methods
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A total of 1334 two-dimensional (2D) ultrasound images of the HC were collected
from the database of the Department of Obstetrics of the Radboud University Med-
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551 pregnant women who received a routine ultrasound screening exam between
May 2014 and May 2015. Only fetuses that did not exhibit any growth abnormali-
ties were included in this study. Images were acquired by experienced sonographers
using either the Voluson E8 or the Voluson 730 ultrasound device (General Electric,
Austria). The local ethics committee (CMO Arnhem-Nijmegen) approved the col-
lection and use of this data for this study. Due to the retrospective data collection,
informed consent was waived. All data was anonymized according to the tenets of
the Declaration of Helsinki.

The size of each 2D ultrasound image was 800 by 540 pixels with a pixel size
ranging from 0.052 to 0.326 mm. This large variation in pixel size is a result of ad-
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Figure 4.3: Overview of the three evaluated quantification systems A, B, and C.

System A was optimized on training data from all trimesters. System B has two

pipelines: pipeline 1 was optimized on training data from trimester one and pipeline

2 was optimized on training data from trimester two and three. System C uses three

pipelines: pipeline 1, 2 and 3 were optimized on training data from trimester one, two

and three, respectively. All pipelines of a quantification system are computed when

the HC is measured in a test ultrasound image.

58 Automated measurement of fetal head circumference

Table 4.1: Number of images in the training and the test set

Trimester Training set Test set
First 165 55
Second 693 233
Third 141 47

Total 999 335

4.2.2 Quantification system

In this study, three variations of the quantification system, indicated as system A,
B, or C, were optimized and evaluated to investigate the influence of the changing
appearance of the fetal head during pregnancy on the performance of the system.
An overview of the three systems is shown in Fig 4.3. All three systems contain
the same two steps: First, Haar-like features were computed from the ultrasound
images to train a random forest classifier (RFC) to locate the fetal skull. Next, the
HC was extracted using Hough transform, dynamic programming and an ellipse fit.
Both steps are described in detail in the following subsections. System A uses one
pipeline that was optimized on training data from all trimesters. It can be seen in
Fig 4.1 that the fetal skull is not clearly visible in the first trimester. To deal with this
different appearance, system B uses two pipelines to measure the HC: one pipeline
was optimized on training data from the first trimester and the other pipeline was
optimized on training data from the second and third trimesters. System C uses
three pipelines, which were optimized on training data from the first, second and
third trimester separately. In a low-resource setting the trimester of the fetus is com-
monly unknown. For systems with multiple pipelines, a selection method was used
to automatically select the best fitted ellipse. This allows the system to automatically
measure the HC without requiring the trimester to be known in advance.
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4.2.2 Quantification system

In this study, three variations of the quantification system, indicated as system A,
B, or C, were optimized and evaluated to investigate the influence of the changing
appearance of the fetal head during pregnancy on the performance of the system.
An overview of the three systems is shown in Fig 4.3. All three systems contain
the same two steps: First, Haar-like features were computed from the ultrasound
images to train a random forest classifier (RFC) to locate the fetal skull. Next, the
HC was extracted using Hough transform, dynamic programming and an ellipse fit.
Both steps are described in detail in the following subsections. System A uses one
pipeline that was optimized on training data from all trimesters. It can be seen in
Fig 4.1 that the fetal skull is not clearly visible in the first trimester. To deal with this
different appearance, system B uses two pipelines to measure the HC: one pipeline
was optimized on training data from the first trimester and the other pipeline was
optimized on training data from the second and third trimesters. System C uses
three pipelines, which were optimized on training data from the first, second and
third trimester separately. In a low-resource setting the trimester of the fetus is com-
monly unknown. For systems with multiple pipelines, a selection method was used
to automatically select the best fitted ellipse. This allows the system to automatically
measure the HC without requiring the trimester to be known in advance.
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Figure 4.4: Overview of the twelve Haar-like features utilized in the quantification

system. From top to bottom: 1. Edge features in horizontal and vertical direction

(kernel size of two by two pixels). 2. Line features in horizontal en vertical direction

(kernel size of three by three pixels). 3. Center-surround features (kernel size of three

by three pixels). 4. Rectangle features (kernel size of two by two pixels). The left side

of each row represents the features in upright direction. The right side of each row

represents the features in rotated direction. The height and width of the features in

rotated direction are larger compared to the upright direction, but they capture the

same relationship between the neighboring pixels.

Detect fetal skull

The likelihood map of the pixel classifier was used to detect the fetal skull in three
steps. First, a Hough transform was applied to detect the center of the fetal skull.
Secondly, dynamic programming was used to detect the outside of the fetal skull.
Finally, an ellipse was fitted on the result of the dynamic programming algorithm to
measure the HC.
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Pixel classifier

The first step of the three quantification systems consists of a pixel classifier that em-
phasizes the fetal skull and reduces artifacts in the ultrasound image, by computing
the likelihood that each pixel in the image has of being part of the fetal skull. This
makes the detection of the fetal skull in the second step more robust.

Feature extraction: Haar-like features67 were used to be able to discriminate be-
tween background pixels and pixels that belong to the fetal skull. Viola and Jones 68

have shown that using an integral image enables the rapid computation of these fea-
tures. Fig 4.4 shows the twelve different Haar-like features that were used for the
pixel classification. The Haar-like features in rotated direction have a larger kernel
width and height compared to the upright direction, but they capture the same re-
lationship between the neighboring pixels. The Haar-like features were computed
in different kernel sizes. To make these kernels invariant to the pixels size of the
ultrasound image, all features were computed in millimeters. The pixel size of each
Haar-like feature was chosen as close to the millimeter scale as possible. As a con-
sequence, the kernel size of the Haar-like features increases when the pixel size of
an ultrasound image decreases. A larger kernel size will result in a higher kernel
response. To make the response of the feature independent from its kernel size, the
Haar-like features were normalized. Normalization was performed by dividing the
positive and negative coefficients of the kernel by their respective areas.

Classification: An OpenCV implementation of the RFC69 was used for pixel clas-
sification. Positive samples were obtained from pixels annotated by the sonogra-
phers as the HC. The same number of negative samples were obtained from pixels
randomly taken from the background with a minimal distance dmin from the an-
notation. When negative samples were obtained too close to the annotation they
resemble positive samples, since the manually drawn ellipse will never fit the outer
edge of the skull perfectly. This problem was solved by increasing dmin, which was
optimized within the training set. Data augmentation was applied by flipping the
ultrasound image horizontally, which resembles an acquisition with a flipped ultra-
sound transducer. The pixel classifier produces a likelihood map with a per pixel
estimate of being part of the fetal skull. This likelihood map was visualized with a
color map ranging from green to red, where a high likelihood was shown in red.
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resemble positive samples, since the manually drawn ellipse will never fit the outer
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sound image. This algorithm uses the same center and number of angles, Nangles, as
the first dynamic programming algorithm, but without any downsampling in radial
direction to maintain detailed information about the edge of the skull. To detect the
outside of the fetal skull, the derivative of the ultrasound image in radial direction
was computed. Pilot experiments showed that the fetal skull is only a few millime-
ters thick. To restrict the second dynamic programming algorithm to the area that
is likely to contain the fetal skull, the second dynamic programming algorithm was
only computed on the area within a distance of 2 mm from the first dynamic pro-
gramming result. It is not advisable to directly apply dynamic programming to the
derivative of the ultrasound image in radial direction because this would be overly
sensitive to noise in ultrasound image. The result of the second dynamic program-
ming algorithm, computed on the derivative of the ultrasound image, was taken as
the final result for the ellipse fit in the next step.

Figure 4.5: A: Perfect pixel classifier likelihood map where only the fetal skull has a

high probability (depicted in white) and the background a low probability (depicted

in gray). The pixels outside of the FOV are depicted in black. The center detected by

the hough transform is depicted in purple and the radial offset is depicted in green.

This schematic example uses eight angles (Nangles) for the polar transform (depicted

in blue). The sampling distance (Sdis) is depicted in red. B: The output of the polar

transform. The dynamic programming algorithm is used to extract the shortest path

from left to right.
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Hough transform: An itk implementation of the Hough transform algorithm70

was used to detect the center of the fetal skull from the likelihood map of the pixel
classifier. Every classification pipeline has a GA ranging from the minimum GA,
GAmin, to the maximum GA, GAmax. The minimum radius, rmin, of each classifica-
tion pipeline was set to the half of the biparietal diameter (BPD) of the GAmin on
the P3 curve of Verburg et al. 39. The maximum radius, rmax, of each classification
pipeline was computed using Eq. (4.1) in which the HC and BPD are taken from
the GAmax of the P97 curve of Verburg et al. 39. The Hough transform was not used
to measure the HC because the fitted circle will not give a good estimation of the
elliptical shape of the fetal skull. Instead, the detected center was used for initializa-
tion of the dynamic programming algorithm (as explained in the next step), which
is computational more efficient than fitting an ellipse using Hough transform.

rmax =

⌈
HC
π

− BPD
2

⌉
(4.1)

Dynamic programming: Dynamic programming was used to extract the pixels
belonging to the outside of the fetal skull71. Dynamic programming was used, be-
cause it can be computed very efficiently compared to other methods like active
contouring. Fig 4.5 shows a schematic example of the dynamic programming algo-
rithm. Dynamic programming was used in a polar transform of the pixel classifier
likelihood map to find the shortest path from the left to the right side of Fig 4.5.B.
The polar transform uses a preset number of angles, Nangles, around the center point
that was detected with the Hough transform algorithm. The sampling distance, Sdis,
in radial direction was increased to make the algorithm less sensitive to noise and
spurious responses in the likelihood map and to a decrease computation time. When
Sdis becomes too large, the resolution of the polar transform decreases and eventually
the dynamic programming algorithm will fail to detect the fetal skull. An optimal
value for Sdis was determined on the training set. To make the dynamic program-
ming algorithm less sensitive to small circular structures in the likelihood map, a
radial offset of 5 mm and 10 mm was taken for the second and third trimester, re-
spectively. According to the annotation protocol for HC measurements, the HC must
be detected at the outside edge of the fetal skull39. Although the RFC was trained
with annotations that describe the outside of the fetal skull, the Haar-like features
were not able to distinguish between inside and outside of the fetal skull. There-
fore, the RFC detected all pixels belonging to the fetal skull instead of only those
that belong to the outside of the fetal skull. For this reason, the dynamic program-
ming algorithm detected the midline of the skull. To solve this problem, a second
dynamic programming algorithm was computed in the polar transform of the ultra-
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sound image. This algorithm uses the same center and number of angles, Nangles, as
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to measure the HC because the fitted circle will not give a good estimation of the
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tion of the dynamic programming algorithm (as explained in the next step), which
is computational more efficient than fitting an ellipse using Hough transform.

rmax =

⌈
HC
π

− BPD
2

⌉
(4.1)

Dynamic programming: Dynamic programming was used to extract the pixels
belonging to the outside of the fetal skull71. Dynamic programming was used, be-
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The polar transform uses a preset number of angles, Nangles, around the center point
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in radial direction was increased to make the algorithm less sensitive to noise and
spurious responses in the likelihood map and to a decrease computation time. When
Sdis becomes too large, the resolution of the polar transform decreases and eventually
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value for Sdis was determined on the training set. To make the dynamic program-
ming algorithm less sensitive to small circular structures in the likelihood map, a
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spectively. According to the annotation protocol for HC measurements, the HC must
be detected at the outside edge of the fetal skull39. Although the RFC was trained
with annotations that describe the outside of the fetal skull, the Haar-like features
were not able to distinguish between inside and outside of the fetal skull. There-
fore, the RFC detected all pixels belonging to the fetal skull instead of only those
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Table 4.2: Parameter sets for optimizing systems A, B, and C.

Parameter Set
Number of trees in RFC Ntrees∈{1, 2, 5, 10, 20, 50, 100}
Haar-like feature scales (mm) Fscales∈{0.1, 0.2, 0.5,...,40, 45, 50}
Background sampling (mm) dmin∈{0, 0.1, 0.2, 0.3}
Polar transform (mm) Sdis∈{0, 0.1, 0.2, 0.3, 0.4, 0.5}
Polar transform Nangles∈{360, 270, 180}

features were optimized. Starting with the optimum single scale, additional scales
were only included when they improved the result. Thirdly, both the minimal dis-
tance, dmin and Sdis were increased until the performance did not improve anymore.
Finally, the number of angles, Nangles, used for the polar transform was decreased as
long as the performance of the system did not decrease, to speed up computation
time.

4.3.2 HC comparison

The HC annotations of observer 1 were used as a reference to compare the perfor-
mance of quantification system A, B, or C, as well as the observer 2 using the dif-
ference (DF), the absolute difference (ADF), the Hausdorff distance (HD)73 and the
Dice similarity coefficient (DSC)74.

DF was defined as:

DF = HCS −HCR, (4.2)

where HCR is the HC measured by observer 1 and HCS is the HC measured by
observer 2 or quantification system A, B or C.

ADF was defined as:

ADF = |HCS −HCR| (4.3)
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Ellipse fitting: A direct least square fitting of ellipses72 was used to determine
the HC from the extracted pixels of the dynamic programming algorithm. Only
the pixels detected by the dynamic programming algorithm within the highest fifth
percentile of the likelihood map of the pixel classifier were used to fit the ellipse,
because these pixels have a high likelihood for being part of the fetal skull. The
fitted ellipse was required to have a circumference of at least 38.6 mm. This is the
smallest reported HC on the curve of Verburg et al. 39 and will therefore prevent the
quantification system from detecting small circular structures or noise in the image.

Select best result

All pipelines of a quantification system were computed when the HC was measured
in a test ultrasound image. In a low-resource setting the trimester of the fetus is
commonly unknown, so quantification systems B and C will produce two and three
fitted ellipses, respectively. To allow the system to fully automatically measure the
HC, the ellipse with the highest median value of the first dynamic programming
algorithm on the pixel classifier likelihood map was selected as the final result.

4.3 Experiments

Four experiments were performed to evaluate the performance of the three quan-
tification systems and compare them to the manual annotations of the experienced
sonographer (observer 1) and the medical researcher (observer 2). First, the param-
eters of the pipelines were optimized for each system. Secondly, the HC measured
by observer 1 was used as a reference to compare the HC measured by the three
systems and the HC measured by observer 2. Thirdly, the measured HCs were used
to estimate the GAs which were compared to the GAs that were estimated using
the CRL (measured in the first trimester of the pregnancy). Finally, we checked for
indications of overfitting.

4.3.1 System parameter optimization

All parameters in the three quantification systems were optimized within the train-
ing set using a three-fold cross-validation. Optimization of five parameters was per-
formed to improve the system performance (the parameter settings can be found in
Table 4.2). First, the number of trees in the RFC was increased until the performance
of the classifier was stable. Increasing the number of trees increases the computation
time, so the lowest number of trees which showed a stable performance was used
during optimization of the other parameters. Secondly, the scales of the Haar-like
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Table 4.2: Parameter sets for optimizing systems A, B, and C.

Parameter Set
Number of trees in RFC Ntrees∈{1, 2, 5, 10, 20, 50, 100}
Haar-like feature scales (mm) Fscales∈{0.1, 0.2, 0.5,...,40, 45, 50}
Background sampling (mm) dmin∈{0, 0.1, 0.2, 0.3}
Polar transform (mm) Sdis∈{0, 0.1, 0.2, 0.3, 0.4, 0.5}
Polar transform Nangles∈{360, 270, 180}

features were optimized. Starting with the optimum single scale, additional scales
were only included when they improved the result. Thirdly, both the minimal dis-
tance, dmin and Sdis were increased until the performance did not improve anymore.
Finally, the number of angles, Nangles, used for the polar transform was decreased as
long as the performance of the system did not decrease, to speed up computation
time.

4.3.2 HC comparison

The HC annotations of observer 1 were used as a reference to compare the perfor-
mance of quantification system A, B, or C, as well as the observer 2 using the dif-
ference (DF), the absolute difference (ADF), the Hausdorff distance (HD)73 and the
Dice similarity coefficient (DSC)74.

DF was defined as:

DF = HCS −HCR, (4.2)

where HCR is the HC measured by observer 1 and HCS is the HC measured by
observer 2 or quantification system A, B or C.

ADF was defined as:

ADF = |HCS −HCR| (4.3)
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Ellipse fitting: A direct least square fitting of ellipses72 was used to determine
the HC from the extracted pixels of the dynamic programming algorithm. Only
the pixels detected by the dynamic programming algorithm within the highest fifth
percentile of the likelihood map of the pixel classifier were used to fit the ellipse,
because these pixels have a high likelihood for being part of the fetal skull. The
fitted ellipse was required to have a circumference of at least 38.6 mm. This is the
smallest reported HC on the curve of Verburg et al. 39 and will therefore prevent the
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Select best result
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HC, the ellipse with the highest median value of the first dynamic programming
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tification systems and compare them to the manual annotations of the experienced
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eters of the pipelines were optimized for each system. Secondly, the HC measured
by observer 1 was used as a reference to compare the HC measured by the three
systems and the HC measured by observer 2. Thirdly, the measured HCs were used
to estimate the GAs which were compared to the GAs that were estimated using
the CRL (measured in the first trimester of the pregnancy). Finally, we checked for
indications of overfitting.

4.3.1 System parameter optimization

All parameters in the three quantification systems were optimized within the train-
ing set using a three-fold cross-validation. Optimization of five parameters was per-
formed to improve the system performance (the parameter settings can be found in
Table 4.2). First, the number of trees in the RFC was increased until the performance
of the classifier was stable. Increasing the number of trees increases the computation
time, so the lowest number of trees which showed a stable performance was used
during optimization of the other parameters. Secondly, the scales of the Haar-like
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4.4 Results

4.4.1 System parameter optimization

Table 4.3 shows the final parameter settings of the three quantification systems, as
determined by running the optimization procedure on the training set explained in
Section 4.3. The Haar-like feature scales are sorted by importance. Note that both
the most important Haar-like feature scale, Fscales, and the downsampling of the
dynamic programming, Sdis, increases with the trimester.

Table 4.3: Final parameter settings of quantification systems A, B, and C after param-

eter optimization.

System A System B System C
Computed on trimester(s) 1, 2 and 3 1 2 and 3 1 2 3
Number of trees RFC, Ntrees 10 10 10 10 10 10
Haar-Like feature scales, Fscales(mm) 6, 20 2.5, 0.5, 11 7,11 2.5, 0.5, 11 7 9,12
Background sampling, dmin (mm) 0 0.2 0.2 0.2 0.1 0.1
Hough transform, rmin (mm) 5 5 12 5 12 34
Hough transform, rmax (mm) 61 18 61 18 50 61
Polar transform, Sdis (mm) 0.4 0.2 0.4 0.2 0.3 0.5
Polar transform, Nangles 270 270 270 270 270 270

4.4.2 Visualization of computation steps of quantification system C

Fig 4.6 shows the output of each step in quantification system C for an ultrasound
image in the test set of a fetus with a GA of 20+0 weeks. All three pipelines of system
C are computed on the input image from the test set. The second row shows the
output of the pixel classifiers for each pipeline. It can be seen that the pixel classifier
of the first pipeline, which is optimized on the training data of the first trimester, does
not give a high response on this image. The third row shows the polar transform
of the pixel classifier, where it can be seen that the radial dimension of the image
decreases as the trimester increases due to the increase in sampling distance Sdis.
The middle image of the fourth row shows that the second dynamic programming
result (green) is re-positioned towards the outside of the fetal skull compared to the
first dynamic programming result (red). Row six shows the final three fitted ellipses.
In this example, the pipeline that was optimized on the training data of the second
trimester gave the highest median pixel classifier response on the edge of the fitted
ellipse. This ellipse was therefore selected as the final result.
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HD was defined as:

H(S,R) = max(h(S,R), h(S,R)), (4.4)

where R = {r1, . . . , rq} are the pixels from observer 1 and S = {s1, . . . , sp} are the
pixels from observer 2 or quantification system A, B or C, given:

h(S,R) = max
sεS

max
rεR

||s− r||. (4.5)

DSC was defined as:

DSC = 2·|AreaS∩AreaR|
|AreaS |+|AreaR| , (4.6)

where AreaR is the area of the annotation of observer 1 and AreaS is the area of
the annotation of observer 2 or the quantification system A, B or C.

Statistical analysis was performed to determine whether the difference was sig-
nificant (p < 0.05). When the tested data was normally distributed according to the
Shapiro-Wilk test, a paired T-Test was performed using SPSS (version 20.0). Other-
wise, a Wilcoxon Signed Rank Test was performed. Although not all distributions
were normally distributed, the tables in the Results Section show the mean and stan-
dard deviation, because this makes a comparison with values provided in previous
literature possible.

4.3.3 GA comparison

The GA from the HC of the quantification systems and the observers was estimated
using the P50 curve from Verburg et al. 39. The reference GA was determined with
a CRL measurement between 20 mm (8+4 weeks) and 68 mm (12+6 weeks). The dif-
ferences between the estimated GA and the reference GA were computed for eval-
uation of the results. The same statistical tests as explained in the previous Section
were used to determine whether the difference in GA was significant.

4.3.4 Overfitting

The best performing quantification system was evaluated on the training data to
investigate whether overfitting of the system parameters had occurred.
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4.4.3 HC comparison

Table 4.4 shows the DF, ADF, HD and DSC of the measured HC from observer 1
compared to quantification systems A, B and C and observer 2. The ADF, HD and
DSC of system A are significantly worse in the first trimester than systems B and
C and observer 2. In the second trimester, system A fails on one image because
the system fits an ellipse smaller than 38.6 mm. Therefore, the values for system
A in the second trimester only consist of 232 values. The DF and ADF of observer
2 are significantly worse in the second trimester than systems A, B and C. There
are no significant differences in HC between the systems and observer 2 in the third
trimester.

Table 4.4: Results of the experienced sonographer (observer 1) compared to the clas-

sifier A, B and C and the medical researcher (observer 2) on the test set.

Trimester 1 Trimester 2 Trimester 3

DF(mm)

Observer 2 1.4±1.9•o 3.4±2.8∗•o 1.4±7.0
System A 3.2±20.5 1.1±3.0•o 0.7±6.3
System B -0.3±6.0 0.9±3.8 1.3±6.7
System C -0.3±6.1 0.8±3.3 0.6±5.9

ADF(mm)

Observer 2 1.8±1.5 3.7±2.5∗•o 5.4±4.6
System A 11.3±17.3‡•o 2.3±2.2 5.1±3.7
System B 3.1±5.1 2.5±3.0 5.4±4.0
System C 3.1±5.2 2.4±2.4 4.8±3.4

HD (mm)

Observer 2 0.9±0.5 1.8±0.9 3.3±1.6
System A 5.0±5.7‡•o 1.8±1.1 3.5±1.6
System B 1.7±2.3‡ 1.8±1.4 3.9±2.3
System C 1.7±2.3‡ 1.8±1.3 3.3±1.6

DSC(%)

Observer 2 96.8±1.7 97.5±1.0∗• 97.4±1.0
System A 84.1±15.2‡•o 97.6±1.3 97.3±1.1
System B 94.4±5.4‡ 97.6±1.5 96.9±1.5
System C 94.4±5.5‡ 97.6±1.4 97.2±1.2

Note: ‡significantly different from observer 2, ∗significantly different from sys-

tem A, •significantly different from system B, osignificantly different from sys-

tem C
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Figure 4.6: Steps of quantification system C. From left to right: pipeline 1, 2, and 3,

respectively. From top to bottom: (1) Input image. (2) Input ultrasound image with

overlay of pixel classifier likelihood ranging from green to red and Hough transform

result in pink. (3) Polar transformed pixel classifier likelihood with overlay of dy-

namic programming in red. (4) Polar transformed ultrasound image with overlay

of dynamic programming in red and repositioned dynamic programming result in

green. (5) Ultrasound image with overlay of the highest five percentile repositioned

dynamic programming pixels. (6) Ultrasound image with fitted ellipse in green and

annotation of the experienced sonographer in red. In this example image, the pipeline

that was optimized for the second trimester is automatically selected as the best re-

sult, since the edge of this fitted ellipse has the highest median pixel classifier output.
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Figure 4.6: Steps of quantification system C. From left to right: pipeline 1, 2, and 3,

respectively. From top to bottom: (1) Input image. (2) Input ultrasound image with

overlay of pixel classifier likelihood ranging from green to red and Hough transform

result in pink. (3) Polar transformed pixel classifier likelihood with overlay of dy-

namic programming in red. (4) Polar transformed ultrasound image with overlay

of dynamic programming in red and repositioned dynamic programming result in

green. (5) Ultrasound image with overlay of the highest five percentile repositioned

dynamic programming pixels. (6) Ultrasound image with fitted ellipse in green and

annotation of the experienced sonographer in red. In this example image, the pipeline

that was optimized for the second trimester is automatically selected as the best re-

sult, since the edge of this fitted ellipse has the highest median pixel classifier output.
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Table 4.5: Mean difference with the reference GA (days) that was estimated using the

CRL in the first trimester

Trimester 1 Trimester 2 Trimester 3
Observer 1 0.8±2.6 -0.0±4.6 1.9±11.0
Observer 2 1.6±2.7†•o 2.0±4.8∗•o 3.9±13.7
System A 2.5±11.2 0.6±4.7†•o 2.9±12.5
System B 0.6±4.3 0.6±4.9† 3.8±14.4o

System C 0.6±4.3 0.4±4.7† 2.5±12.4

Note: †significantly different from observer 1, ∗significantly

different from system A, •significantly different from system

B, osignificantly different from system C

4.4.5 Visual results of quantification system C

To get an idea how the median ADF of system C looks like, the result closest to the
median ADF of system C is visualized in Fig 4.8. The images of the first, second
and third trimester have an ADF of 1.8 mm, 1.6 mm and 4.2 mm, which results in a
difference in GA of -1.0 days, -0.9 days and -4.3 days, respectively. The median ADF
in the first trimester is a lot smaller compared to the mean ADF of 3.1 mm (shown in
Table 4.4), due to one outlier. This outlier is shown in the right column of Fig 4.8 and
has a ADF of 36.8 mm, which results in a difference in GA of 22.5 days with the GA
estimated from the CRL.
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4.4.4 GA comparison

The difference between the reference GA (estimated from the CRL) and the GA com-
puted from the HC is shown in Table 4.5 and visualized in Fig 4.7. The difference
between the reference and observer 2 in the first trimester is significantly worse than
the difference between the reference and observer 1, system B and system C. The
difference between the reference and observer 2 in the second trimester is signifi-
cantly worse compared to observer 1 and systems A, B and C. Fig 4.7 shows that
observer 2 tended to manually annotate the HC a few millimeters larger compared to
observer 1, which resulted in a larger estimated GA. Fig 4.7 shows that system A has
a large interquartile range and four outliers with a difference of more than 20 days.
System B is significantly worse than that of system C in the third trimester. This is
caused by two outliers with a difference of more than 30 days, which are shown in
Fig 4.7.
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Table 4.5: Mean difference with the reference GA (days) that was estimated using the

CRL in the first trimester

Trimester 1 Trimester 2 Trimester 3
Observer 1 0.8±2.6 -0.0±4.6 1.9±11.0
Observer 2 1.6±2.7†•o 2.0±4.8∗•o 3.9±13.7
System A 2.5±11.2 0.6±4.7†•o 2.9±12.5
System B 0.6±4.3 0.6±4.9† 3.8±14.4o

System C 0.6±4.3 0.4±4.7† 2.5±12.4

Note: †significantly different from observer 1, ∗significantly

different from system A, •significantly different from system

B, osignificantly different from system C

4.4.5 Visual results of quantification system C

To get an idea how the median ADF of system C looks like, the result closest to the
median ADF of system C is visualized in Fig 4.8. The images of the first, second
and third trimester have an ADF of 1.8 mm, 1.6 mm and 4.2 mm, which results in a
difference in GA of -1.0 days, -0.9 days and -4.3 days, respectively. The median ADF
in the first trimester is a lot smaller compared to the mean ADF of 3.1 mm (shown in
Table 4.4), due to one outlier. This outlier is shown in the right column of Fig 4.8 and
has a ADF of 36.8 mm, which results in a difference in GA of 22.5 days with the GA
estimated from the CRL.

70 Automated measurement of fetal head circumference

4.4.4 GA comparison

The difference between the reference GA (estimated from the CRL) and the GA com-
puted from the HC is shown in Table 4.5 and visualized in Fig 4.7. The difference
between the reference and observer 2 in the first trimester is significantly worse than
the difference between the reference and observer 1, system B and system C. The
difference between the reference and observer 2 in the second trimester is signifi-
cantly worse compared to observer 1 and systems A, B and C. Fig 4.7 shows that
observer 2 tended to manually annotate the HC a few millimeters larger compared to
observer 1, which resulted in a larger estimated GA. Fig 4.7 shows that system A has
a large interquartile range and four outliers with a difference of more than 20 days.
System B is significantly worse than that of system C in the third trimester. This is
caused by two outliers with a difference of more than 30 days, which are shown in
Fig 4.7.

S

y

s

 

A

S

y

s

 

B

S

y

s

 

C

O

b

s

 

1

O

b

s

 

2

S

y

s

 

A

S

y

s

 

B

S

y

s

 

C

O

b

s

 

1

O

b

s

 

2

S

y

s

 

A

S

y

s

 

B

S

y

s

 

C

O

b

s

 

1

O

b

s

 

2

−40

−20

0

20

40

D
i
f
f
e
r
e
n
c
e
 
i
n
 
G
A
 
(
d
a
y
s
)

Trimester 1 Trimester 2 Trimester 3

Figure 4.7: The difference with the reference GA (days) that was estimated using the

CRL in the first trimester.

4



4.5 Discussion 73

Table 4.6: Results of quantification system C for training and test set compared to

observer 1

Trimester 1 Trimester 2 Trimester 3
Train set Test set Train set Test set Train set Test set

DF (mm) -0.7±6.4 -0.3±6.1 0.7±2.1 0.8±3.3 1.0±6.1 0.6±5.9
ADF (mm) 3.4±5.5 3.1±5.2 2.3±2.1 2.4±2.4 4.6±4.1 4.8±3.4
HD (mm) 2.1±2.7 1.7±2.3 1.7±0.9 1.8±1.3 3.4±2.0 3.1±1.9
DSC (%) 93.2±7.5∗ 94.4±5.5 97.6±1.8 97.6±1.4 97.2±1.5 97.3±1.5

Note: ∗p<0.05

Table 4.7: Comparison of system C against the reported results published in litera-

ture.

Method No. GA (weeks) DF (mm) ADF (mm) HD (mm) DSC (%)
Our method 335 11-37 0.6±4.3 2.8±3.3 2.0±1.6 97.0±2.8
Zhang et al. 66 10 - -0.22±9.53 - 3.30±1.09 -
Anto et al. 65 50 - - - - 75±-
Perez-Glez. et al. 64 10 - -2.73±2.04 - 2.64±0.57 97.19±0.97
Jatmiko et al. 58 100 - - 8.21±- - -
Satwika et al. 54 72 Trim 1&2 - 14.6±- - -
Foi et al. 75 90 21,28,33 -2.01±3.29 - 2.16±1.44 97.80±1.04
Ciurte et al. 75 90 21,28,33 11.93±5.32 - 4.6±1.64 94.45±1.57
Stebbing et al. 75 90 21,28,33 -3.46±4.06 - 2.59±1.14 97.23±0.77
Sun et al. 75 90 21,28,33 3.83±5.66 - 3.02±1.55 96.97±1.07
Ponomarev et al. 75 90 21,28,33 16.39±24.88 - 6.87±9.82 92.53±10.22
Ni et al. 57 175 17-38 - 5.58±1.74% - -
Zalud et al. 56 80 - - 5.1±5.4 - -
Carneiro et al. 55 20 - - 2.76±1.40 4.15±2.05 -
Lu and Tan 53 11 13-34 - 3.41±1.74% - -

4.5 Discussion

We presented three variations of a quantification system, indicated as system A, B
or C, that measures the fetal HC in all trimesters of the pregnancy. The systems were
evaluated on a large test set of 335 ultrasound images. The best system, system C,
performs comparable to an experienced sonographer (observer 1) and significantly
better than a medical researcher (observer 2) in the first and second trimester. The
presented system shows similar or superior results compared to other systems pub-
lished in literature. This is the first system in literature that was evaluated on a very
larger test set of 335 ultrasound images which contained data of all trimesters of the
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Figure 4.8: Results of quantification system C closest to the median ADF of system

C. From left to right: first trimester with a ADF of 1.8 mm, result second trimester

with a ADF of 1.6 mm, result third trimester with an ADF of 4.2 mm and worst result

first trimester with an ADF of 36.8 mm. From top to bottom: (1) The ultrasound

image. (2) The ultrasound image with overlay of the pixel classifier likelihood ranging

from green to red and the Hough transform result in pink. (3) The ultrasound image

with an overlay of the highest fifth percentile repositioned dynamic programming

pixels. (4) The ultrasound image with the fitted ellipse in green and the annotation of

observer 1 in red.

4.4.6 Overfitting

Table 4.6 shows the results of quantification system C on the training and the test
set. Overfitting occurs when the results on the training set are much better than the
results on the test set.

4.4.7 Comparison to literature

Table 4.7 shows a comparison of system C with the reported results published in
literature.
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Table 4.6: Results of quantification system C for training and test set compared to

observer 1

Trimester 1 Trimester 2 Trimester 3
Train set Test set Train set Test set Train set Test set
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DSC (%) 93.2±7.5∗ 94.4±5.5 97.6±1.8 97.6±1.4 97.2±1.5 97.3±1.5

Note: ∗p<0.05
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ture.
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Perez-Glez. et al. 64 10 - -2.73±2.04 - 2.64±0.57 97.19±0.97
Jatmiko et al. 58 100 - - 8.21±- - -
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larger test set of 335 ultrasound images which contained data of all trimesters of the
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Figure 4.8: Results of quantification system C closest to the median ADF of system

C. From left to right: first trimester with a ADF of 1.8 mm, result second trimester

with a ADF of 1.6 mm, result third trimester with an ADF of 4.2 mm and worst result

first trimester with an ADF of 36.8 mm. From top to bottom: (1) The ultrasound

image. (2) The ultrasound image with overlay of the pixel classifier likelihood ranging

from green to red and the Hough transform result in pink. (3) The ultrasound image

with an overlay of the highest fifth percentile repositioned dynamic programming

pixels. (4) The ultrasound image with the fitted ellipse in green and the annotation of

observer 1 in red.
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set. Overfitting occurs when the results on the training set are much better than the
results on the test set.

4.4.7 Comparison to literature

Table 4.7 shows a comparison of system C with the reported results published in
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standard deviation of the HC in the second trimester is similar for both observers
and system C. The performance of observer 1 is significantly better in the second
trimester compared to system C, but the mean difference of 0.4 days is not clinically
relevant.

4.5.3 Visual results of quantification system C

Fig 4.8 shows the result of system C with the median ADF for each trimester. It can be
seen that the median result of system C is very similar to the manual annotations of
observer 1. The increase in ADF for later trimesters is mainly caused by the increase
in pixel size. The right column in Fig 4.8 shows the outlier of system C in the first
trimester. In this image, the right and left side of the fetal skull are hardly visible. In
addition, a large shadow appears next to the dark amniotic fluid at the right side of
the fetal skull. While the Hough transform still detects the center of the fetal head,
the dynamic programming algorithm is not able to follow the fetal skull. Instead, it
follows the border between the amniotic fluid and the shadow, resulting in a HC that
is completely off. This results in a difference in GA of 22.5 days with the reference
GA.

4.5.4 Overfitting

Table 4.6 shows the results of system C on the training and the test sets. Note that
no overfitting occurs because the results from the training and test sets did not dif-
fer significantly. The DSC in the first trimester was even significantly worse in the
training set compared to the test set.

4.5.5 Comparison to literature

Table 4.7 shows an overview of previously reported results in literature. Ideally,
these methods were evaluated on the same test set to make a direct comparison pos-
sible. Unfortunately, such a dataset was not available and implementation of other
methods is a difficult task due to the lack of implementation details. Even though a
direct comparison of the results is not possible, Table 4.7 highlights three strengths of
our method. First, four methods53,55,64,66 were only evaluated on a dataset of 10, 11 or
20 images. Our method was evaluated on a large independent test set of 335 images,
which shows not only the feasibility but also the robustness of the method. Secondly,
it was shown that the first trimester is the most challenging trimester to measure the
HC, but almost all other methods either did not mention the GA of the test set, or
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pregnancy (Table 4.7). In the next Section, we discuss various aspects of the system
and the experimental results.

4.5.1 HC comparison

Table 4.4 shows that system A performs significantly worse in the first trimester com-
pared to systems B and C. This results from the fact that the appearance of the fetal
skull in the first trimester differs from that in the second and third trimester. Since
the fetal skull is relatively soft in the first trimester, it does not always appear brighter
than the inside of the fetal head. Therefore, it is sometimes very difficult to detect the
edge of the fetal head, especially when it lies close to the wall of the uterus. Thus, it is
more difficult to automatically measure the HC in the first trimester. For this reason,
it is important to show the performance of an automated system for each trimester
separately. It is also known that the standard deviation in HC increases as the size of
the fetus increases. The primary reason for this results from the fact that the natural
variation in fetal size increases with GA. Since the fetal head becomes larger with
GA, the pixel size of the ultrasound image also increases. This can also be noticed
in the curve of Verburg et al. 39, where the P3-P97 interval gets wider with increasing
GA. Separation of the different trimesters is hereby essential when evaluating the
results. It also underlines the clinical importance to estimate the GA of the fetus in
the first or second trimester to obtain a reliable estimate of the fetal GA.

4.5.2 GA comparison

Table 4.5 shows that system B performs significantly worse than system C in the
third trimester, so it is beneficial to train a separate classifier for the third trimester
as well. Together with the results from the previous Section, it can be concluded that
system C performs superior to systems A and B and was therefore chosen as the
final system.

Table 4.5 and Fig 4.7 show that the standard deviation of the GA in the first
trimester of quantification system C is larger than the that of the two observers.
This is mainly caused by one outlier. When this outlier was removed, the standard
deviation decreases from 4.3 to 3.1 days, which is similar to the standard deviation
of observers 1 and 2.

The mean GA estimation of system C is significantly better than observer 2 in
the first and second trimesters, compared to the reference GA estimated from the
CRL. The underlying reason for this is that observer 2 systematically annotated the
HC a few millimeters larger compared to observer 1. This indicates that the system
may aid inexperienced human observers in measuring the HC. Furthermore, the



4.5 Discussion 75

standard deviation of the HC in the second trimester is similar for both observers
and system C. The performance of observer 1 is significantly better in the second
trimester compared to system C, but the mean difference of 0.4 days is not clinically
relevant.

4.5.3 Visual results of quantification system C

Fig 4.8 shows the result of system C with the median ADF for each trimester. It can be
seen that the median result of system C is very similar to the manual annotations of
observer 1. The increase in ADF for later trimesters is mainly caused by the increase
in pixel size. The right column in Fig 4.8 shows the outlier of system C in the first
trimester. In this image, the right and left side of the fetal skull are hardly visible. In
addition, a large shadow appears next to the dark amniotic fluid at the right side of
the fetal skull. While the Hough transform still detects the center of the fetal head,
the dynamic programming algorithm is not able to follow the fetal skull. Instead, it
follows the border between the amniotic fluid and the shadow, resulting in a HC that
is completely off. This results in a difference in GA of 22.5 days with the reference
GA.

4.5.4 Overfitting

Table 4.6 shows the results of system C on the training and the test sets. Note that
no overfitting occurs because the results from the training and test sets did not dif-
fer significantly. The DSC in the first trimester was even significantly worse in the
training set compared to the test set.

4.5.5 Comparison to literature

Table 4.7 shows an overview of previously reported results in literature. Ideally,
these methods were evaluated on the same test set to make a direct comparison pos-
sible. Unfortunately, such a dataset was not available and implementation of other
methods is a difficult task due to the lack of implementation details. Even though a
direct comparison of the results is not possible, Table 4.7 highlights three strengths of
our method. First, four methods53,55,64,66 were only evaluated on a dataset of 10, 11 or
20 images. Our method was evaluated on a large independent test set of 335 images,
which shows not only the feasibility but also the robustness of the method. Secondly,
it was shown that the first trimester is the most challenging trimester to measure the
HC, but almost all other methods either did not mention the GA of the test set, or

74 Automated measurement of fetal head circumference

pregnancy (Table 4.7). In the next Section, we discuss various aspects of the system
and the experimental results.

4.5.1 HC comparison

Table 4.4 shows that system A performs significantly worse in the first trimester com-
pared to systems B and C. This results from the fact that the appearance of the fetal
skull in the first trimester differs from that in the second and third trimester. Since
the fetal skull is relatively soft in the first trimester, it does not always appear brighter
than the inside of the fetal head. Therefore, it is sometimes very difficult to detect the
edge of the fetal head, especially when it lies close to the wall of the uterus. Thus, it is
more difficult to automatically measure the HC in the first trimester. For this reason,
it is important to show the performance of an automated system for each trimester
separately. It is also known that the standard deviation in HC increases as the size of
the fetus increases. The primary reason for this results from the fact that the natural
variation in fetal size increases with GA. Since the fetal head becomes larger with
GA, the pixel size of the ultrasound image also increases. This can also be noticed
in the curve of Verburg et al. 39, where the P3-P97 interval gets wider with increasing
GA. Separation of the different trimesters is hereby essential when evaluating the
results. It also underlines the clinical importance to estimate the GA of the fetus in
the first or second trimester to obtain a reliable estimate of the fetal GA.

4.5.2 GA comparison

Table 4.5 shows that system B performs significantly worse than system C in the
third trimester, so it is beneficial to train a separate classifier for the third trimester
as well. Together with the results from the previous Section, it can be concluded that
system C performs superior to systems A and B and was therefore chosen as the
final system.

Table 4.5 and Fig 4.7 show that the standard deviation of the GA in the first
trimester of quantification system C is larger than the that of the two observers.
This is mainly caused by one outlier. When this outlier was removed, the standard
deviation decreases from 4.3 to 3.1 days, which is similar to the standard deviation
of observers 1 and 2.

The mean GA estimation of system C is significantly better than observer 2 in
the first and second trimesters, compared to the reference GA estimated from the
CRL. The underlying reason for this is that observer 2 systematically annotated the
HC a few millimeters larger compared to observer 1. This indicates that the system
may aid inexperienced human observers in measuring the HC. Furthermore, the

4



76 Automated measurement of fetal head circumference

only evaluated their system only on data of the second and third trimester. We there-
fore recommend that future research will report the GA and evaluate the results for
each trimester separately. This would make a comparison with previous work eas-
ier. Thirdly, only Satwika et al. 54 have evaluated their system on a relatively large
test set of 72 images which included data of the first trimester. They have reported a
mean ADF of 14.6 mm, which is much larger compared to the ADF of 2.8±3.3 mm of
our proposed method. Even though these systems were not evaluated on the same
test set, it illustrates the potential of our proposed method.

4.5.6 Study limitations

The data for this study was acquired in only one hospital using two different ultra-
sound devices from the same vendor. Future work should include multi-center data
from different vendors to be able to further evaluate the performance of the pro-
posed method. The results show that the system performs significantly better than a
medical researcher in the first and second trimester, but it is still required to obtain
the 2D standard plane. Other work in literature focuses on aiding less skilled sonog-
raphers in obtaining the 2D standard plane, or reconstructing the 2D standard plane
from a 3D volume76–81. Combining these methods with our proposed system could
further improve inter-observer variability, but this is out of the scope of this work.

4.6 Conclusions

We presented an automated system for the detection of fetal HC in 2D ultrasound
images. This is the first system presented in literature that was evaluated on a large
independent test set of 335 ultrasound images that included data of all trimesters. It
was shown that it is important to separate the results for each trimester, because
the uncertainty of the estimated GA increases with GA due fact that the natural
variation in fetal size increases with GA. This is the first system that evaluated results
for each trimester separately. The GA can be estimated more accurately in the first
trimester, but the fetal skull is not clearly visible in the first trimester, which makes
automated detection of the HC a more challenging task. The performance of the
presented system was comparable to an experienced sonographer.
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5.1 Introduction

Worldwide, 99% of all maternal deaths occur in developing countries. In absolute
numbers, this corresponds to approximately 820 deaths per day1. Ultrasound is
widely used to detect maternal risk factors during pregnancy, because it is a low-cost,
real-time and non-invasive imaging method. However, images suffer from noise,
shadows, and reverberations, making it hard to interpret them. More importantly, a
trained sonographer is required to acquire and interpret the images. In first world
countries, sonographers are extensively trained to obtain precisely defined standard
imaging planes in which to perform biometric measurements of the fetus42,82–85. The
fetal head circumference (HC) is one of the most important measurements. The HC
can be used to determine the gestational age (GA) and monitor growth of the fetus.
The guidelines describe that the standard plane for obtaining the HC should be mea-
sured at the level of the thalami, where the cavum septi pellucidi interrupts the an-
terior one-third of the falx. Ideally, the falx is positioned horizontally on the screen.
The cerebellum should not be visible in this scanning plane42,82–85. Unfortunately,
there is a severe shortage of trained sonographers in developing countries3, which
keeps ultrasound imaging out of reach for most pregnant women in these countries.
In this paper, we present a system that automatically estimates the HC with the use
of the obstetric sweep protocol (OSP). The OSP consists of multiple free-hand sweeps
with the ultrasound transducer over the abdomen of the pregnant woman. The OSP
can be taught to any health care worker without any prior knowledge of ultrasound
within a day, obviating the need for a trained sonographer to obtain the ultrasound
images. By combining the OSP with a system that can automatically estimate the
HC from the sweep data, there would also be no need for a trained sonographer to
interpret the images for this task.

The literature describes several methods to automatically measure the HC when
the standard plane is acquired56–58,75,76,86. However, acquisition of this standard plane
requires a trained sonographer which is the problem that we would like to solve in
this study. There are three different approaches presented in literature to aid less
experienced sonographers in obtaining information about the fetus using ultrasound
data.

In the first approach, 3D ultrasound is used to automatically extract the stan-
dard plane for the fetal brain76–81, abdomen80,87, heart88,89, nuchal translucency90,
and face91,92. Unfortunately, 3D ultrasound is more expensive compared to 3D ultra-
sound93 and is therefore considered unsuitable for developing countries. Addition-
ally, it is unknown whether this approach is suited for the third trimester when the
fetus does not completely fit within the field of view (FOV) of the 3D probe.
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Abstract

Ultrasound imaging remains out of reach for most pregnant women in developing
countries, because it requires a trained sonographer to acquire and interpret the im-
ages. We address this problem by presenting a system that can automatically esti-
mate the fetal head circumference (HC) from data obtained with the use of the ob-
stetric sweep protocol (OSP). The OSP consists of multiple predefined sweeps with
the ultrasound transducer over the abdomen of the pregnant woman. The OSP can
be taught within a day to any health care worker without prior knowledge of ultra-
sound.

An experienced sonographer acquired both the standard plane—to obtain the ref-
erence HC—together with the OSP from 183 pregnant women in St. Luke’s Hospital,
Wolisso, Ethiopia. The OSP data—which will most likely not contain the standard
plane—was used to automatically estimate the HC using two fully convolutional
neural networks. First, a VGG-Net inspired network was trained to automatically
detect the frames which contained the fetal head. Second, a U-net inspired network
was trained to automatically measure the HC for all frames in which the first net-
work detected a fetal head. The HC was estimated from these frame measurements
and the curve of Hadlock was used to determine the gestational age (GA).

The results show that most automatically estimated GAs fell within the P2.5-P97.5
interval of the Hadlock curve compared to the GAs obtained from the reference HC,
so it is possible to automatically estimate the GA from the OSP data. Our method has
therefore potential application for providing maternal care in resource-constrained
countries.
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Figure 5.1: Visualization of the three free-hand sweeps of the obstetric sweep pro-

tocol. The three sweeps are obtained by moving the ultrasound transducer from the

pubic bone to the breast bone, as indicated by the green arrows.

5.2 Methods

5.2.1 Data

For this study, an experienced sonographer acquired both the standard plane—for
measuring the reference HC—together with the OSP from 183 pregnant women us-
ing the SonoAce R3 (Samsung Medison, Korea). The data was acquired in St. Luke’s
Catholic Hospital and College of Nursing and Midwifery in Wolisso, Ethiopia. Pa-
tient identifiers were removed and the data were saved anonymously. This study
was approved by the local ethics committee (Ref. No. BEFO/AHBTHQO/4004/1-
20). Every pregnant woman in this study signed a written informed consent. All
data was anonymized according to the tenets of the Declaration of Helsinki. The
image of the standard plane was used to measure the reference HC for each patient.
An example image of the standard plane is shown in Figure 5.2. The reference HCs
in the data varied between 116 mm and 361 mm (Figure 5.3); most pregnant women
visited the hospital in the third trimester of their pregnancy, which is typical for ma-
ternal care in developing countries. Note that Figure 5.3 shows only 181 HCs; data
from two anencephalic fetuses was excluded.
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In the second approach, a video of a free-hand 2D ultrasound probe is used to de-
tect the standard plane of the fetal abdomen94,95, heart96 and face97, and to automat-
ically obtain multiple standard planes98,99. Systems analyzing such video streams
can be used to aid less experienced sonographers in obtaining the correct standard
plane. Even though this approach uses 2D ultrasound, it still requires training of
the sonographer to use an ultrasound device and interpret the images to obtain the
biometric measurement of the fetus.

In the third approach, which was used in this study, predefined free-hand sweeps
are acquired to obtain information about the fetus. The main advantage of this ap-
proach is that these sweeps can be taught to any health care worker without any
knowledge of ultrasound within a day. The disadvantage is that the sweep data will
most likely not contain the standard plane that is usually used to perform the bio-
metric measurement. Kwitt et al. 100, used a free-hand sweep on phantom data to
automatically detect structures of interest. To the authors knowledge there is only
one paper in literature that developed a system that automatically detects the fetal
position and heartbeat with the use of a single predefined free-hand sweep101. But
in this paper the authors mention that this single sweep did not contain either the
head or abdomen in 31% of the 129 test cases. In this paper we use the obstetric
sweep protocol (OSP) introduced by DeStigter et al. 6. The OSP consists of multiple
predefined free-hand sweeps. The three transversal sweeps used in this study are
shown in Figure 5.1. The use of three sweeps increases the chance that the fetal head
is visible in at least one of the sweeps.

This is the first study to propose an automated system which estimates the HC
from predefined sweeps without the acquisition or reconstruction of the standard
plane. In previous work, we have shown that it is possible to manually select an
optimal frame from the sweep data to estimate the HC102.The aim of this study was
to develop and validate a method for fully automatic estimation of the HC and the
GA with the use of the OSP, obviating the need for a trained sonographer to provide
point-of-care obstetric ultrasound. The data for this study was acquired in Ethiopia,
and therefore represents data from the target population for this application. We
specifically aimed to reduce the computational complexity of the proposed method
as much as possible, to be able to deploy the system on a low-cost laptop or tablet.
This would facilitate widespread application of this system in developing countries.
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ically obtain multiple standard planes98,99. Systems analyzing such video streams
can be used to aid less experienced sonographers in obtaining the correct standard
plane. Even though this approach uses 2D ultrasound, it still requires training of
the sonographer to use an ultrasound device and interpret the images to obtain the
biometric measurement of the fetus.

In the third approach, which was used in this study, predefined free-hand sweeps
are acquired to obtain information about the fetus. The main advantage of this ap-
proach is that these sweeps can be taught to any health care worker without any
knowledge of ultrasound within a day. The disadvantage is that the sweep data will
most likely not contain the standard plane that is usually used to perform the bio-
metric measurement. Kwitt et al. 100, used a free-hand sweep on phantom data to
automatically detect structures of interest. To the authors knowledge there is only
one paper in literature that developed a system that automatically detects the fetal
position and heartbeat with the use of a single predefined free-hand sweep101. But
in this paper the authors mention that this single sweep did not contain either the
head or abdomen in 31% of the 129 test cases. In this paper we use the obstetric
sweep protocol (OSP) introduced by DeStigter et al. 6. The OSP consists of multiple
predefined free-hand sweeps. The three transversal sweeps used in this study are
shown in Figure 5.1. The use of three sweeps increases the chance that the fetal head
is visible in at least one of the sweeps.

This is the first study to propose an automated system which estimates the HC
from predefined sweeps without the acquisition or reconstruction of the standard
plane. In previous work, we have shown that it is possible to manually select an
optimal frame from the sweep data to estimate the HC102.The aim of this study was
to develop and validate a method for fully automatic estimation of the HC and the
GA with the use of the OSP, obviating the need for a trained sonographer to provide
point-of-care obstetric ultrasound. The data for this study was acquired in Ethiopia,
and therefore represents data from the target population for this application. We
specifically aimed to reduce the computational complexity of the proposed method
as much as possible, to be able to deploy the system on a low-cost laptop or tablet.
This would facilitate widespread application of this system in developing countries.
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The OSP, introduced by DeStigter et al. 6, recommends six free-hand sweeps over
the abdomen of the pregnant women. Saving one sweep with the SonoAce R3 took
on average one minute. To prevent a delay in the clinical work flow, it was decided
to only obtain the three transverse sweeps of the OSP. The transverse sweeps were
obtained from the pubic bone to the breast bone (Figure 5.1). The first sweep was
obtained at the midline, the second sweep was obtained at the left side of the patient
and the third sweep was obtained at the right side of the patient. The sonographer
was asked to acquire around one hundred frames per sweep, but since these sweeps
are made in free-hand mode, the number of frames per sweep was variable. The
imaging depth was set to 12 cm and each frame in the sweep had a size of 630×450
pixels.

An overview of the number of patients, sweeps and frames can be found in Table
5.1. The data was divided in a training set, validation set and test set of 60%, 20%
and 20%, respectively. The training set was used to train the systems, the validation
set was used to optimize hyperparameters of the systems and select the stopping
criterion, the test set was used to evaluate performance of the systems. The number
of frames was matched as closely to the target ratio as possible, while making sure
that the data of one patient was always part of either the training, validation set, or
test set.

All frames within the OSP data were manually labeled for the presence of the
fetal head (Table 5.1). Four different labels were used: present, partially present, not
present and possibly present. Present meant that the fetal head falls within the FOV
of the frame. Partially present meant that the fetal head falls partially outside of
the FOV of the frame, which would make a circumference measurement inaccurate.
Not present meant that the fetal head was not present in the frame. Possibly present
meant that either the frame contains a fraction of the fetal head but not enough to

Table 5.1: Overview of the data

Total Training Validation Test
Targeted ratio (%) 100 60 20 20
No. of patients 183 109 35 39
No. of sweeps 621 369 128 124
No. of frames 49.269 29.181 10.197 9.891

Head present 3.199 2.097 478 624
Head partially present 1.238 772 266 200
Head not present 35.496 20.966 7.394 7.136
Head possibly present 9.336 5.346 2.059 1.931
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Figure 5.2: Example ultrasound image of the standard plane that was used to obtain

the fetal head circumference (green).
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Figure 5.3: Overview of the distribution of head circumferences (N=181) measured

in the standard plane.
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5.2.2 Pre-processing

Three pre-processing steps were performed on the data. Firstly, the pixel values were
rescaled from 0-255 to floating point values from 0-1. Secondly, all frames were au-
tomatically masked to remove surrounding markers like the lookup table, the ruler
and the ultrasound acquisition settings. Finally, since this system is intended to be
used in developing countries, it should be possible to run it on a low-cost laptop
or tablet. To achieve this goal, the frames were downsampled with ten different
downsampling factors—ranging from two to twenty—to decrease the dimensions
of the input layer. Experiments were performed at each downsampling factor to
investigate how much the input image could be downsampled without decreasing
the performance of the system. Figure 5.5 shows four example images with different
downsampling factors. A frame without downsampling had a size of 630×450 pixels
and a frame with a downsampling factor of twenty had a size of 32×23 pixels

Figure 5.5: Visualization of four different downsampling factors of a frame in which

the fetal head is present. From A to D: no downsampling, downsampling factor of 6,

downsampling factor of 12 and downsampling factor of 18. This results in a frame

size of 630×450, 105×75, 53×38 and 35×25 pixels, respectively.
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recognize a fetal head circumference, or it was impossible to be sure whether the
fetal head was present in the frame, due to artifacts or poor image quality. The
frames labeled as possibly present were not used for the training. Figure 5.4 shows
an example of a labeled sweep data set. Despite instructions to the sonographer, not
all three sweeps were acquired for all patients, and not all sweeps contained more
than one hundred frames.

For evaluation of the estimated HC in the test set we excluded ten twins, four
fetuses for which not all three sweeps were recorded, two fetuses in shoulder pre-
sentation, two low-lying fetuses for which a depth setting of 12 cm was not sufficient
to detect the HC, one anencephalic fetus and one patient with polyhydramnios. This
resulted in 23 patients in the validation set and 31 patients in the test set.

Figure 5.4: Labels of an example data set. A schematic drawing of the three sweeps

is shown on the right. Sweep 1 contains 71 frames, sweep 2 contains 101 frames, and

sweep 3 contains 88 frames. Each frame was manually labeled if the frame contains

a fetal head. The color-bar on the right indicates the colors of the four classes. Three

example frames are shown on the left side. One frame from sweep 1 in which the fetal

head is present is shown in red. One frame from sweep 3 in which the fetal head is

partially present is shown in orange. One frame from sweep 3 in which the fetal head

is possibly present is shown in blue; this frame shows an eye of the fetus, but there is

no indication of the fetal head circumference visible in this frame.
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Table 5.2: Network architectures A, B, C, D and E. conv3-N is a 3×3 convolution

with N filters. FC-M is a fully connected layer with M neurons.

A B C D E

input-layer

conv3-16 conv3-16 conv3-16 conv3-16 conv3-16

conv3-16 conv3-16 conv3-16 conv3-16 conv3-16

maxpool maxpool maxpool maxpool maxpool

conv3-32 conv3-32 conv3-32 conv3-32

conv3-32 conv3-32 conv3-32 conv3-32

maxpool maxpool maxpool maxpool

conv3-64 conv3-64 conv3-64

conv3-64 conv3-64 conv3-64

maxpool maxpool maxpool

conv3-128 conv3-128

conv3-128 conv3-128

maxpool maxpool

conv3-256

conv3-256

maxpool

FC-256

FC-128

FC-3

soft-max

Table 5.3: Number of network parameters per downsampling factor (in thousands)

Downsampling
A B C D E

factor

2 69,873 32,613 13,868 5,242 2,195

4 17,067 7,423 2,727 917 -

6 7,204 2,876 843 - -

8 3,976 1,492 400 - -

10 2,412 836 236 - -

12 1,707 541 154 - -

14 1,183 378 - - -

16 872 247 - - -

18 650 173 - - -

20 552 132 - - -
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5.2.3 Fetal head detection

Network architecture

Table 5.2 shows an overview of the five network architectures that were evaluated
for the fetal head detection, indicated by the letters A, B, C, D and E. The net-
work architectures were inspired by the VGG-Net of Simonyan and Zisserman 103.
The downsampled frame from the OSP data was used as the input layer of the net-
work. Network architecture A, B, C, D and E contained one, two, three, four and
five stack(s) of two convolution layers and one max-pooling layer, respectively. The
number of filters in the convolution layer was doubled after each max-pooling layer.
Three fully connected (FC) layers follow after the last max-pooling layer. The last
FC layer contained three neurons followed by a soft-max to a posterior over the
three classes. These three classes were: fetal head present, partially present and not
present. All hidden layers (convolutional and FC) were equipped with a rectified
linear activation function. The number of network parameters needed to be as low
as possible to make deployment on a low-end laptop or tablet feasible in the future.
This decrease in network parameters was achieved by decreasing the number of fil-
ters in the convolution layers and decreasing the number of neurons in the FC layers
compared to the VGG-Net of Simonyan and Zisserman. An overview of the num-
ber of network parameters for each network architecture per downsampling factor
is shown in Table 5.3. Note that not all network architectures can be computed for
each downsampling factor because the input image could become too small.

Network parameters

The weight parameters in the network were initialized using He weight initializa-
tion104. The network was implemented using Theano105 and Lasagne106. Training
was performed on a Nvidia GeForce GTX 1080 graphics card. During training, a
batch size of 102 frames was used for all experiments, since this was the maximum
number of frames that fitted in the GPU memory when a downsampling factor of
two was used. The size of the batch size will change the rate of convergence107,
but this influence was not evaluated since an exhaustive search of all hyper pa-
rameters is not feasible due to the required computation power. The Adam update
method108 was used with an initial learning rate of 0.001 and L2 regularization of
0.0001. Dropout was used in all FC layers (p=0.5)109.
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ranging from two to twenty.

Network parameters

During training, a batch size of five 2D standard planes was used for all experi-
ments. The Adam update method was used with an initial learning rate of 0.0001.
Dropout was used in the two bottom layers (p=0.5), similar to the U-net proposed
by Ronneberger et al. 110

Training of the network

The 109 patients in the training set only included 90 2D standard plane images, be-
cause the 2D standard plane was not acquired for 19 patients. The pixels annotated
as part of the HC were labeled positive and the other pixels were labeled as back-
ground, which resulted in a highly unbalanced class distribution. To balance the
class distribution a weight map was introduced. The foreground weight was set to
one and the background weight was set to the number of positive divided by the
number of negative pixels per 2D standard plane image. Augmentation was per-
formed by horizontally flipping a random selection of 50% of the 2D images. The
system was evaluated on the OSP frames which were classified as fetal head present
by the best performing fetal head detection network described in Section 5.2.3.

Network result

Connected component analysis was used to extract the largest component for each
frame. Smaller components were included when the component had at least half
the size of the largest component. A least square ellipse fit72 was used to extract
the HC for each frame. Since the HC measured in the standard plane is one of the
largest HCs one can measure from a fetal head, the frame with the highest non-
outlier HC was selected as the final HC. Outliers were removed to make the esti-
mated HC robust to segmentation errors. An outlier was defined as a HC larger
than Q3 + 1.5× (Q3 −Q1)

111. The network with the lowest mean absolute difference
(MAD) between the reference HC, measured in the standard plane, and the auto-
mated HC, measured using the OSP, on the validation set was selected as the final
network.
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Training of the network

During training, one epoch was defined as one pass over all frames in the train-
ing set. The training set included 20,966 frames labeled as fetal head not present,
2,097 frames labeled as fetal head present and 772 frames labeled as fetal head par-
tially present. To balance the class distribution in each mini-batch, we oversampled
the data in the present and partially present classes. Each mini-batch contained 102
frames (34 for each class). Augmentation was performed by horizontally flipping
a random selection of 50% of the frames within a batch. To avoid a bias towards
the negative samples during training, we defined a validation set which contained
all 266 frames labeled as fetal head partially present and a random selection of 266
frames labeled as fetal head present and 266 frames labeled as fetal head not present.
Every ten iterations, the linear weighted kappa was computed on this balanced vali-
dation set. The stopping criteria for training was reached when the weighted kappa
on this balanced validation did not increase during ten epochs.

Network result

The network with the highest weighted kappa on the balanced validation set during
training was selected as the final network. The accuracy on the full validation set
was computed to compare the final result for each network architecture and down-
sampling factor.

5.2.4 Head circumference estimation

The frames in the OSP data will most likely not contain the standard plane which
is normally used to measure the fetal HC, since the sweeps were predefined. The
frames will therefore contain a random cross section of the fetal head. This section
explains how the HC was estimated from the OSP data without obtaining or recon-
structing the standard plane.

Network architecture

A network architecture inspired by the U-net of Ronneberger et al. 110 was used to
determine which pixels in a frame belong to the outer edge of fetal head. The U-net
proposed by Ronneberger et al. 110 contains over 31 million parameters. The number
of parameters was reduced to 1.9 million by decreasing the number of channels in
each feature map by a factor of four. The output segmentation map of the network
contains with two classes: pixels that belong to the outer edge of fetal head and back-
ground pixels. The network was evaluated on ten different downsampling factors,
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Figure 5.6: Accuracy at ten different downsampling factors. A: Accuracy on the

full validation set for the five different network architectures. B: Based on graph A,

we selected the best network architecture per downsampling factor and show the

accuracy on both the validation set and test set.
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5.2.5 Gestational age estimation

The curve of Hadlock et al. 112 was used to determine the GA from the HC. The refer-
ence GA, determined from the HC obtained using the standard plane, was compared
to the automatically estimated GA, determined from the automatically estimated HC
using the OSP data. It was not possible to determine the GA when the HC fell outside
the curve of Hadlock, therefore these fetuses were excluded in the GA comparison.

5.3 Evaluation and Results

All results were evaluated for ten different downsampling factors—ranging from
two to twenty—to investigate to which extent the input image could be downsam-
pled without decreasing the performance of the deep learning systems. Section 5.3.1
shows the performance for the head detection, Section 5.3.2 and show the results for
the HC estimation and Section 5.3.3 show the results for the GA estimation.

5.3.1 Fetal head detection

Figure 5.6.A shows the accuracy for detection of the fetal head with the five network
architectures on the full validation set for ten different downsampling factors. Net-
work C is the best performing network for downsampling factors two until eight,
network B is the best performing network for downsampling factors 10, 12, 14 and
18 and network A is the best performing network for downsampling factor 16 and
20. Network E could only be computed on a downsampling factor of two, but it did
not converge and therefore the accuracy was 0.909. This accuracy is reached when
all validation frames were classified as fetal head not present. The best perform-
ing network architecture per downsampling factor was also computed on the test
set. Figure 5.6.B shows the accuracy of the best performing network architecture for
both the validation set and test set. The frame based accuracy on the validation set
was highest at downsampling factor six; network architecture C performed best at
this downsampling factors and was therefore selected as the final network.
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5.2.5 Gestational age estimation

The curve of Hadlock et al. 112 was used to determine the GA from the HC. The refer-
ence GA, determined from the HC obtained using the standard plane, was compared
to the automatically estimated GA, determined from the automatically estimated HC
using the OSP data. It was not possible to determine the GA when the HC fell outside
the curve of Hadlock, therefore these fetuses were excluded in the GA comparison.

5.3 Evaluation and Results

All results were evaluated for ten different downsampling factors—ranging from
two to twenty—to investigate to which extent the input image could be downsam-
pled without decreasing the performance of the deep learning systems. Section 5.3.1
shows the performance for the head detection, Section 5.3.2 and show the results for
the HC estimation and Section 5.3.3 show the results for the GA estimation.

5.3.1 Fetal head detection

Figure 5.6.A shows the accuracy for detection of the fetal head with the five network
architectures on the full validation set for ten different downsampling factors. Net-
work C is the best performing network for downsampling factors two until eight,
network B is the best performing network for downsampling factors 10, 12, 14 and
18 and network A is the best performing network for downsampling factor 16 and
20. Network E could only be computed on a downsampling factor of two, but it did
not converge and therefore the accuracy was 0.909. This accuracy is reached when
all validation frames were classified as fetal head not present. The best perform-
ing network architecture per downsampling factor was also computed on the test
set. Figure 5.6.B shows the accuracy of the best performing network architecture for
both the validation set and test set. The frame based accuracy on the validation set
was highest at downsampling factor six; network architecture C performed best at
this downsampling factors and was therefore selected as the final network.
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5.3.2 Head circumference estimation

Figure 5.8 shows the MAD between the reference HC and the automatically esti-
mated HC at ten different downsampling factors for both the validation set and the
test set. The MAD on the validation set was lowest at a downsampling factor of
four. The MAD on the test set at this downsampling factor was 10.3 mm. To make a
comparison with literature possible, the 95% confidence interval was estimated us-
ing 1.96 times the standard deviation (SD) of the mean difference (MD). The MD±SD
was −3.0 ± 13.3 mm and −1.3 ± 4.6%, resulting in a 95% confidence interval of 26.1
mm and 9.1%.
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Figure 5.7: Labels and classification of two patients from the test set. The colors

present the four different classes as indicated by the color-bar. Left: Labels and classi-

fication of example patients shown in Figure 5.4. Sweeps 1, 2 and 3 have an accuracy

of 1.000, 1.000 and 0.987, respectively. Right: Labels and classification of the test pa-

tient with the lowest accuracy (0.861). Sweeps 1, 2 and 3 have an accuracy of 0.821,

0.826 and 0.939, respectively.

Figure 5.7 shows the manual labels and the classification of network architecture
C with a downsampling factor six for two patients in the test set. The patient on the
right has the lowest accuracy (of 0.861) of all patients in the test set.

There was one fetus in the test set in which the network did not detect any frames
as fetal head present. This fetus had a HC of 116 mm, which was the smallest HC in
the complete dataset (Figure 5.3).
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Figure 5.7: Labels and classification of two patients from the test set. The colors

present the four different classes as indicated by the color-bar. Left: Labels and classi-
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Figure 5.7 shows the manual labels and the classification of network architecture
C with a downsampling factor six for two patients in the test set. The patient on the
right has the lowest accuracy (of 0.861) of all patients in the test set.

There was one fetus in the test set in which the network did not detect any frames
as fetal head present. This fetus had a HC of 116 mm, which was the smallest HC in
the complete dataset (Figure 5.3).
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network was used to detect the frames in the OSP data which present the fetal head.
Using a simple network architecture, a frame based accuracy of 0.97 was achieved
on an independent test set. The frames in which the network detects the fetal head
were used to automatically estimate the HC. The MAD between the automatically
measured HC—estimated using the OSP—and the reference HC—obtained by an
experienced sonographer in the standard plane—was 10.3 mm. This corresponded
to a MAD in GA of 8.1 days, for which most estimated GAs fall within the P2.5-P97.5
interval of the curve of Hadlock et al. 112

5.4.1 Fetal head detection

Figure 5.6 shows that the highest accuracy for detection of the fetal head using the
VGG-Net inspired network on the validation set was achieved at downsampling fac-
tor six. Network architecture C achieved the highest frame based accuracy of 0.98 on
the validation set, which results in an accuracy of 0.97 on the test set. It is interesting
to see that accuracy of the deep learning network remains above 0.97 for both the
validation and the test until a downsampling factor of fourteen. At a downsampling
factor of fourteen, the image size is only 45×32 pixels. The performance decreases
when the downsampling factor is larger than fourteen, which shows that the im-
age quality became insufficient to detect the fetal head. There is also a performance
drop when the downsampling factor is smaller than four, which could be caused
by a decrease in the receptive field of the network. Figure 5.7 shows the labels and
classification of network architecture C of two patients from the test set. The low-
est accuracy within the test set of 0.861 was obtained from the patient shown on the
right. In this case, each sweep contained frames of the fetal abdomen which were
misclassified as the fetal head. Nevertheless, HC estimation was still possible as
most of the frames that contained the fetal head were still detected. There was one
fetus in the test set in which the deep learning network did not detect any frames
with the fetal head present. This fetus had a reference HC of 116 mm, which was the
smallest HC in the dataset (Figure 5.3). The deep learning network was not trained
to classify frames containing a small fetal head as such. If more training data from
the first and second trimester were available, this problem could possibly be solved.

5.4.2 Head circumference estimation

Figure 5.8 shows that the lowest MAD for measuring the HC using the U-net in-
spired network on the validation set was achieved at downsampling factor four,
which resulted in an MAD of 10.3 mm on the test set. The literature reports different
inter-observer variabilities for the HC measurement. Napolitano et al. 52 reported a
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5.3.3 Gestational age estimation

Figure 5.9 shows a scatter plot with the GA obtained from the reference HC using
the standard plane and the GA obtained from the automatically estimated HC using
the OSP data evaluated on the test set. The figure shows 29 patients, because the HC
of one fetus was larger than the largest reported HC of Hadlock et al. 112, so for this
fetus the GA could not be determined. The figure shows that most points fall within
the P2.5-P97.5 interval of the Hadlock curve. The MD±SD between the reference GA
and the automatically estimated GA was −3.6± 9.8 days.
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Figure 5.9: Comparison between reference GA and the GA obtained from the OSP on

the test set. The red triangles represent the GA per pregnancy. The black dashed lines

represent the ±1.96 SD in GA, with an SD of 1 cm as reported by Hadlock et al. 112

5.4 Discussion

Until now, ultrasound imaging has relied on a human sonographer to determine
the standard plane to obtain biometric measurements of the fetus. In this study, we
show that it is possible to measure the HC with the use of the OSP. A deep learning
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5.3.3 Gestational age estimation

Figure 5.9 shows a scatter plot with the GA obtained from the reference HC using
the standard plane and the GA obtained from the automatically estimated HC using
the OSP data evaluated on the test set. The figure shows 29 patients, because the HC
of one fetus was larger than the largest reported HC of Hadlock et al. 112, so for this
fetus the GA could not be determined. The figure shows that most points fall within
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5.4 Discussion

Until now, ultrasound imaging has relied on a human sonographer to determine
the standard plane to obtain biometric measurements of the fetus. In this study, we
show that it is possible to measure the HC with the use of the OSP. A deep learning
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5.4.5 Improvements

It was not possible for an untrained midwife to acquire the data for this study in
Ethiopia, since untrained midwives currently do not have access to an ultrasound
device. In addition, an experienced sonographer was required to ensure that the
standard plane was recorded. This study shows that the OSP can be used to auto-
matically estimate the gestational age. A future study should evaluate this system
with the use of data that was acquired by untrained midwives. All data in this study
was acquired with one ultrasound device. Future studies should include data from
different ultrasound devices to evaluate the system performance for different de-
vices. Using the SonoAce R3, it took one minute to save one sweep; it was therefore
considered impractical to acquire all six sweeps of the OSP. Still, all six sweeps are
required to be able to estimate the HC for a fetus in shoulder presentation. In the
future, an ultrasound device should be used that is able to record all six sweeps con-
secutively and save the data within a reasonable amount of time. Furthermore, an
accurate measurement of the HC was not possible for two fetuses in the validation
set, since the head of these fetuses was positioned deeper than 12 cm. We therefore
recommend a standard depth of 15 cm for future studies. Next to this, it could be
possible that the system measures the HC incorrectly due to a pathology. The user
could therefore be presented with the frames that were used to determine the HC.
This would give the user the possibility to check if these frames indeed contain the
fetal head and therefore determine if the reported HC was correct.

5.5 Conclusion

We presented one deep learning network that detects the fetal head using the OSP
and a second deep learning network that estimates the HC from the frames in which
the fetal head was detected. This is the first method in literature that automatically
measures the fetal HC with the use of a standardized sweep protocol that can be
taught to any health care worker within one day. The deep learning network com-
plexity was decreased and the input image was downsampled to decrease hardware
demands and make deployment on low-cost hardware possible. The extensive eval-
uation on data acquired in Ethiopia shows that the head detection system achieves
a frame based accuracy of 0.97 on the test set. The MAD between the reference HC
and automated HC was 10.3 mm, equivalent to a GA MAD of 8.1 days, for which
most estimated GAs fell within the P2.5-P97.5 interval of the Hadlock curve. This
demonstrates the feasibility of this approach for a GA between 19 and 40 weeks.
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95% limits of agreement of 4.9%, Sarris et al. 50 reported a 1.96 SD of 12.1 mm, and
Perni et al. 46 reported a 1.96 SD of 11.0 mm. The 1.96 SD of our system is 26.1 mm
and 9.1%. This is more than double compared to most inter-observer variabilities
reported in literature, which is caused by the fact that the OSP does not contain the
correct cross section to measure the HC. The next paragraph will discuss how this
increase influences the estimation of the GA.

5.4.3 Gestational age estimation

The result shows that the MAD on the test set is 8.1 days. Figure 5.9 shows that
most estimated GA from the OSP fall within the P2.5-P97.5 interval of the curve
of Hadlock et al. 112. Most of the data for this study was acquired from pregnant
women in the third trimester of pregnancy, since most pregnant women visit the
hospital in Ethiopia around this time. Using the HC obtained in the third trimester
is less reliable for estimating the GA, due to for example fetal growth restrictions50.
Hadlock et al. 112 reported that the reliability (2 × the SD) for the GA can reach a
maximum of 20.9 days. So even though the 1.96 SD of the estimated HC was twice as
high compared to inter-observer variability reported in literature, it is still possible to
estimate the GA within the P2.5-P97.5 confidence interval of the Hadlock curve. We
therefore conclude that it is feasible to automatically estimate the GA by measuring
the HC utilizing the OSP. The GA can be estimated more accurately by measuring the
HC in the first and second trimesters of pregnancy, but this data was not available for
this study. Future research should investigate how accurate this system can estimate
the GA in the first and second trimester.

5.4.4 Deployment on low-cost hardware

Table 5.3 shows that best performing head detection architecture only contains 843
thousand parameters. Classification of one test frame with downsampling factor
six using the training hardware took only 7.0 × 10-5 seconds. The best performing
architecture for the HC measurement contains 1.9 million parameters, taking 5.0 ×
10-3 seconds to classify one frame with downsampling factor four. The ultrasound
device used in this study acquires 23 frames per second, so real time computation on
the training hardware is feasible. Unfortunately, this high-end hardware will be too
expensive for developing countries, but implementation of this system on a low-cost
GPU—like the Intel Movidius—is feasible and could make this an affordable system
for developing countries.
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6.1 Introduction

Worldwide, 99% of all maternal mortality, corresponding to approximately 820 deaths
each day, occur in resource-limited settings1. Ultrasound imaging is commonly used
to manage obstetric care and to detect maternal risk factors. Unfortunately, ultra-
sound remains out of reach for most women in resource-limited countries, mainly
because it is too expensive and requires a trained sonographer to obtain and interpret
the ultrasound images. Still, the WHO recommends an ultrasound examination for
pregnant women in resource-limited settings to estimate gestational age (GA), deter-
mine fetal malpresentation and detect multiple pregnancies2. In the recent years, a
large number of low-cost and portable ultrasound devices have been introduced to
the market. Most of these devices can be connected to a tablet or smartphone, mak-
ing them a suitable option for use in rural areas where there could be a lack of power
supply. These systems still require a trained sonographer to obtain and interpret the
ultrasound images. This is unfortunate because, there is a severe shortage of well-
trained medical personnel in resource-limited settings3–5. Training a sonographer
requires a significant investment of time and resources, which impedes the intro-
duction of ultrasound in resource-limited settings. DeStigter et al. 6 introduced the
obstetric sweep protocol (OSP), which consists of six predefined free-hand sweeps
with the ultrasound transducer over the abdomen of the pregnant women (Figure
6.1). The OSP can be taught to any healthcare worker without knowledge of ultra-
sound within a day. The OSP therefore enables easy acquisition of prenatal ultra-
sound data. When there is an internet connection, the data can be send to a remote
reading center where the images are interpreted. This remote reading center still re-
quires a trained sonographer to interpret the OSP data. In this paper we combine the
OSP with image analysis systems that are sufficiently simple that they can run on a
smartphone or tablet, making it possible to automatically analyze the OSP without a
trained sonographer. The automated analyzes can be performed on the device which
was used to acquire the ultrasound data, which would also obviate the need of an in-
ternet connection. In this study we investigate if and which maternal risk factors can
be automatically detected using the OSP. Previous work in this area is very limited.
To the authors knowledge, only one paper was published which shows feasibility of
automatically detecting the fetal hearth and fetal presentation using a single sweep
acquired with a mid-range ultrasound device at the University of Oxford101. Un-
fortunately, it was not possible to determine if this system could detect intrauterine
fetal death, because the data did not contain fetuses with a non-beating heart. The
single sweep also did not contain either the fetal head or abdomen in 31% of the 129
test cases. The OSP, which was used in this study, contains six sweeps and therefore
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Abstract

Obstetric ultrasound imaging is commonly used to detect maternal risk factors, but
often remains out of reach for pregnant women in resource-limited settings because
of a severe shortage of well-trained sonographers to acquire and interpret the im-
ages. The obstetric sweep protocol (OSP), introduced by DeStigter et al. in 2011,
consists of six predefined free-hand sweeps with the ultrasound transducer over the
abdomen of the pregnant women. The OSP can be taught to any health care worker
within a day and thus avoids the need of a trained sonographer to acquire ultra-
sound images. By combining the OSP with automated image analysis, this study
investigates if it is possible to automatically determine maternal risk factors and
therefore avoiding the need of a trained sonographer to both acquire and interpret
the ultrasound images.

The automated system was able to correctly detect 61% of all twins with a speci-
ficity of 99%. The GA was estimate with a median difference of -0.4 days and an
interquartile range of 15.2 days compared to the reference GA estimated from the
HC obtained in the 2D standard plane. All 31 fetuses in breech presentation were
correctly detected and only one of the 216 fetuses in cephalic presentation was incor-
rectly classified as breech.

The results show that it is possible to automatically detect twins, estimate GA and
determine fetal presentation using the OSP. The system therefore shows potential
to detect these maternal risk factors without a trained sonographer. This approach
could therefore vastly reduce time and costs that are required to train sonographers
in resource-limited settings. This could potentially bring ultrasound in reach for
pregnant women in resource-limited countries, making it possible to better manage
obstetric care and refer pregnant women in time to a health care clinic to receive
treatment if necessary.

The OSP was acquired from 318 pregnant women using the low-cost MicrUs
(TELEMED, Vilnius, Lithuania  ) in St. Luke’s Hospital, Wolisso, Ethiopia. Image
analysis systems were evaluated to automatically detect twin preg- nancies,
estimate gestational age (GA) and determine fetal presentation. The GA
was determined from the head circumference (HC) measurement using the Hadlock
curve. The reference HC was obtained using the 2D standard plane, which was ac-
quired by a trained sonographer.
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each day, occur in resource-limited settings1. Ultrasound imaging is commonly used
to manage obstetric care and to detect maternal risk factors. Unfortunately, ultra-
sound remains out of reach for most women in resource-limited countries, mainly
because it is too expensive and requires a trained sonographer to obtain and interpret
the ultrasound images. Still, the WHO recommends an ultrasound examination for
pregnant women in resource-limited settings to estimate gestational age (GA), deter-
mine fetal malpresentation and detect multiple pregnancies2. In the recent years, a
large number of low-cost and portable ultrasound devices have been introduced to
the market. Most of these devices can be connected to a tablet or smartphone, mak-
ing them a suitable option for use in rural areas where there could be a lack of power
supply. These systems still require a trained sonographer to obtain and interpret the
ultrasound images. This is unfortunate because, there is a severe shortage of well-
trained medical personnel in resource-limited settings3–5. Training a sonographer
requires a significant investment of time and resources, which impedes the intro-
duction of ultrasound in resource-limited settings. DeStigter et al. 6 introduced the
obstetric sweep protocol (OSP), which consists of six predefined free-hand sweeps
with the ultrasound transducer over the abdomen of the pregnant women (Figure
6.1). The OSP can be taught to any healthcare worker without knowledge of ultra-
sound within a day. The OSP therefore enables easy acquisition of prenatal ultra-
sound data. When there is an internet connection, the data can be send to a remote
reading center where the images are interpreted. This remote reading center still re-
quires a trained sonographer to interpret the OSP data. In this paper we combine the
OSP with image analysis systems that are sufficiently simple that they can run on a
smartphone or tablet, making it possible to automatically analyze the OSP without a
trained sonographer. The automated analyzes can be performed on the device which
was used to acquire the ultrasound data, which would also obviate the need of an in-
ternet connection. In this study we investigate if and which maternal risk factors can
be automatically detected using the OSP. Previous work in this area is very limited.
To the authors knowledge, only one paper was published which shows feasibility of
automatically detecting the fetal hearth and fetal presentation using a single sweep
acquired with a mid-range ultrasound device at the University of Oxford101. Un-
fortunately, it was not possible to determine if this system could detect intrauterine
fetal death, because the data did not contain fetuses with a non-beating heart. The
single sweep also did not contain either the fetal head or abdomen in 31% of the 129
test cases. The OSP, which was used in this study, contains six sweeps and therefore
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Abstract

Obstetric ultrasound imaging is commonly used to detect maternal risk factors, but
often remains out of reach for pregnant women in resource-limited settings because
of a severe shortage of well-trained sonographers to acquire and interpret the im-
ages. The obstetric sweep protocol (OSP), introduced by DeStigter et al. in 2011,
consists of six predefined free-hand sweeps with the ultrasound transducer over the
abdomen of the pregnant women. The OSP can be taught to any health care worker
within a day and thus avoids the need of a trained sonographer to acquire ultra-
sound images. By combining the OSP with automated image analysis, this study
investigates if it is possible to automatically determine maternal risk factors and
therefore avoiding the need of a trained sonographer to both acquire and interpret
the ultrasound images.

The OSP was acquired from 318 pregnant women using the low-cost MicrUs
(Telemed Ultrasound Medical Systems, Milan, Italy) in St. Luke’s Hospital, Wolisso,
Ethiopia. Image analysis systems were evaluated to automatically detect twin preg-
nancies, estimate gestational age (GA) and determine fetal presentation. The GA
was determined from the head circumference (HC) measurement using the Hadlock
curve. The reference HC was obtained using the 2D standard plane, which was ac-
quired by a trained sonographer.

The automated system was able to correctly detect 61% of all twins with a speci-
ficity of 99%. The GA was estimate with a median difference of -0.4 days and an
interquartile range of 15.2 days compared to the reference GA estimated from the
HC obtained in the 2D standard plane. All 31 fetuses in breech presentation were
correctly detected and only one of the 216 fetuses in cephalic presentation was incor-
rectly classified as breech.

The results show that it is possible to automatically detect twins, estimate GA and
determine fetal presentation using the OSP. The system therefore shows potential
to detect these maternal risk factors without a trained sonographer. This approach
could therefore vastly reduce time and costs that are required to train sonographers
in resource-limited settings. This could potentially bring ultrasound in reach for
pregnant women in resource-limited countries, making it possible to better manage
obstetric care and refer pregnant women in time to a health care clinic to receive
treatment if necessary.
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6.2.1 Data acquisition

The data of this study was acquired at St. Luke’s Catholic Hospital and College of
Nursing and Midwifery, Wolisso, Ethiopia. The collection of this data for this study
was approved by the local ethics committee. The WHO estimated that there were
353 deaths per 100.000 live births in Ethiopia in 20151, so the acquired data in this
study therefore originates from the target population. A trained gynecologist ac-
quired both the OSP and the 2D standard plane, to obtain the reference HC, for a to-
tal of 318 pregnant women, using the low-cost MicrUs EXT-1H in combination with
the C5-2R60S-3 transducer (Telemed Ultrasound Medical Systems, Milan, Italy). The
gynecologist was asked to acquire around 100 frames per sweep. All six sweeps
were recorded in a single cine to make the acquisition time as short as possible. This
reduces the possibility of fetal movement in between sweeps as much as possible.
The imaging depth was set to 15 cm with an imaging angle of 65◦. This resulted in
a frame rate of 19 frames per second. Figure 6.2 shows a flowchart of the included
data. A total of 38 cases had to be excluded for the reasons mentioned in Table 6.1.
The remaining 280 cases included 33 twins, 216 fetuses in cephalic presentation and
31 fetuses in breech presentation. The GA was estimated using HC obtained in the
2D standard plane. The reference HC of the study population varied between 139
and 357 mm.

Table 6.1: Exclusion criteria for the obstetric sweep protocol data in this study

Exclusion criterium Number of cases
Image quality was insufficient due to lack of ultrasound gel 12
The sweeps were not acquired in the correct order 6
The transducer was not detached from the abdomen 3
Fetus in transverse presentation 8
Fetus in oblique presentation 9

Total 38

6.2.2 Frame classification

The OSP data of the 280 included datasets contained a total of 209.642 frames, which
were manually labeled in six different classes: fetal head completely present, fetal
head partially present, fetal torso present, side view of the fetus present and ultra-
sound transducer detached. The remaining frames were classified as other. Fetal
head completely present meant that the fetal head was full contained within the
field of view (FOV) of the frame. Fetal head partially present meant that the fetal
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Figure 6.1: Visualization of the obstetric sweep protocol, consisting of six predefined

free-hand sweeps with the ultrasound transducer over the abdomen of the pregnant

woman.

ensures that the fetal head and abdomen are present in at least one of the six sweeps.
In this study we propose a system that can automatically detect twin pregnancy, es-
timate GA and determine fetal presentation using the OSP, which obviates the need
of a trained sonographer for these three tasks.

6.2 Methods

This section is divided into five paragraphs that explain the automated system. The
first paragraph describes how each frame within the OSP data was automatically
classified in one of six classes that include three fetal body parts and a class for
frames where the ultrasound transducer was detached from the abdomen of the
pregnant women. Secondly, the frames classified as ultrasound transducer detached
were used to separate the OSP cine data into six separate sweeps. The last three
paragraphs describe how the system detects twin pregnancies, estimate GA and de-
termine fetal presentation with the use of the automated frame classification.
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6.2.4 Detect twin pregnancies

Previous studies have shown that twin pregnancies increase the risk of significant
maternal morbidity and mortality113–115. The detection of a twin pregnancy is the
first step that makes it possible to monitor these pregnancies and refer these women
in time to a health care clinic for delivery. The frame classification of the six sweeps
was used to automatically detect twin pregnancies using a Random forest classi-
fier69. It was assumed that the head and torso of the two fetuses could be separated
using the frame classification, making it possible to automatically detect twins.

6.2.5 Estimate gestational age

Estimation of GA and fetal growth is essential for optimal obstetric management39.
Ultrasound could especially be useful in resource-limited settings to accurately es-
timate gestational age, as menstrual dates may be incorrect or unknown116. In pre-
vious work it was shown that the OSP can be used to manually select an optimal
frame of the fetal head from the sweep data to estimate GA117. In this work, a deep
learning system inspired on the U-net of Ronneberger et al. 110 was used to automat-
ically estimate the HC in all frames classified as fetal head completely present by
the first deep learning system. The frames classified as fetal head partially present
were not included, because an accurate HC measurement was not possible in these
frames. The HC measured in the standard plane is one of the largest circumference
one can measure from the fetal head, so the final HC was determined by taking the
75th percentile of all estimated HCs. The GA was determined from the HC using
the curve of Hadlock et al. 112. All 33 twin pregnancies were excluded for evaluation
of the GA. Additionally, seven fetuses had to be excluded for evaluation of the GA,
because the 2D reference standard was not acquired and therefore no ground truth
HC available for these cases.

6.2.6 Determine fetal presentation

It was investigated if it is possible to automatically distinguish fetuses in cephalic
presentation from fetuses in breech presentation. Although the published work
in literature is still ambiguous whether a cesarean section should118–121 or should
not122,123 be performed when the fetus is in breech presentation, it is clear that detec-
tion of breech presentation is required to plan the delivery. Early detection of breech
presentation is especially important in resource-limited settings, where medical at-
tention is not easily accessible31,33,124. In this work, the automated frame classifica-
tion was used to distinguish fetuses in cephalic presentation from fetuses in breech
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Figure 6.2: Flowchart of the datasets included in this study.

head falls partially outside of the FOV of the frame, which would make a circum-
ference measurement inaccurate. Fetal torso meant a cross section through the fetal
torso close to the transversal plane. Side view meant a section where the side of the
fetus was visible. The ultrasound transducer was detached from the abdomen of the
pregnant women in between the six sweeps, these frames were labeled as detached.
A deep learning system inspired on the VGG-net of Simonyan and Zisserman 103 was
developed to automatically classify each frame in the correct class.

6.2.3 Sweep separation

The six free-hand sweeps of the OSP were acquired after each other and saved in one
cine. The frames classified as detached by the deep learning system were used to au-
tomatically separate this cine into six separate sweeps. Since the sweeps were made
in free-hand mode, most sweeps did not contain exactly 100 frames. The sweeps
were therefore resampled to 100 frames, using nearest-neighbor interpolation, after
the sweeps were separated.
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Figure 6.3: All three subfigures contain information extracted from the OSP of one

pregnant woman. A: Five example frames, showing each a different class. B: The

result of the automated frame classification for this pregnant woman, including all

six sweeps and the detached frames in between (depicted in black). C: Frame classi-

fication after separation and resampling of the six sweeps. The is a fetus in cephalic

presentation, which could be automatically detected because the fetal head (depicted

in dark and light blue) was detected below the fetal torso (depicted in green).
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presentation using a Random forest classifier69. The frame classification shows the
location of the fetal head in relation to the fetal torso. A cephalic or breech presen-
tation was detected when the fetal head was located below or above the fetal torso,
respectively.

6.2.7 Statistical analysis

A five-fold cross-validation was used to be able to evaluate the results on all scans.
Each fold, the algorithms were trained on 80% of the data and the remaining 20% was
used for evaluation of the results. The number of twins, cephalic, breech and gesta-
tional age were balanced across the folds. The performance of the automated frame
classification was evaluated using the accuracy score, which shows the percentage
of the frames that were classified in the correct class, according to the manual labels.
The mean and standard deviation were used to describe the results when the data
was normally distributed. Otherwise the median and interquartile range (IQR) were
used to describe the results.

6.3 Results

6.3.1 Frame classification

The deep learning network classifies each frame of the cine into one of six classes.
The network was able to correctly classify 92.6% of all frames into the correct class.
Table 6.2 shows the accuracy for all six classes separately. Figure 6.3.A. shows an ex-
ample image for five frames from the OSP data of one patient which were classified
in the correct class by the deep learning network. Figure 6.3.B. shows the frame clas-
sification for all frames of the OSP data of one patient. The six classes are depicted in
a different color. The frames classified as detached (depicted in black) show where
the six sweeps start and end. The five parts classified as detached were used to sepa-
rate the cine into six separate sweeps. In this example, the first frame of sweep 1 was
classified as fetal head completely present. The six separated and resamples sweeps
are shown in Figure 6.3.C. From this figure it is possible to determine that this fetus
lies in cephalic presentation, because the fetal head (depicted in dark and light blue)
is located below the fetal torso (depicted in green).
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Figure 6.5: Left: Frame classification of an undetected twin pregnancy. Right: Frame

32 of sweep 3, which shows the torsos of two fetuses that both lie in cephalic presen-

tation.

correctly classified as torso, but this was not sufficient to separate the two fetuses
in order to detect the twin. Only three of the 247 non-twins were classified as twin,
corresponding to a specificity of 99%. All these three fetuses showed an abnormality:
one fetus in breech presentation, one fetus with lower urinary tract obstruction and
one fetus with severe ascites (shown in Figure 6.8.A.).

6.3.3 Estimate gestational age

The standard plane—used to measure the reference HC—was acquired by the gy-
necologist for 240 fetuses (Figure 6.2). The HC of 15 fetuses fell outside the curve
of Hadlock et al. 112, so the GA was estimated for the remaining 225 fetuses. Figure
6.6 shows a scatterplot with the results. The x-axis shows the reference GA that was
determined from the HC obtained in the standard plane. The y-axis shows the GA
that was determined from the automatically estimated HC utilizing the OSP. The
curve of Hadlock has a confidence interval, which results from variations in the fetal
head size and observer variability for measuring the HC. This confidence interval
increases with GA which can also be seen in Figure 6.6. From all automatically es-
timated GAs, 87.6% fell within the p2.5%-p97.5% interval of the curve of Hadlock.
A total of six automatically estimated GAs were larger than the p97.5% curve and
a total of 22 automatically estimated GAs were smaller than the P2.5% curve. The
median difference between the reference GA and the automated estimated GA was
-0.4 days with an IQR of 15.2 days. This median difference was -0.4 days with an IQR
of 9.3 days in the second trimester (14+0 until 27+6 week of gestation) and -0.4 days
with an IQR of 16.7 days in the third trimester (28+0 until 40+0 week of gestation).
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Table 6.2: Result of the deep learning system for the frame classification of the sweep

data

Class Accuracy
Head completely 90.7%
Head partially 79.1%
Torso 81.1%
Side view 85.3%
Background 96.3%
Detached 97.3%

6.3.2 Detect twin pregnancies

The data for this study included 33 twins, of which 20 were correctly detected by
the automated system (sensitivity of 61%). Figure 6.4 shows the automated frame
classification of two correctly detected twins. For both correctly detected twins, one
fetus lies in cephalic presentation and the other fetus in breech presentation, which
makes it possible to distinguish the two fetuses with the use of the automated frame
classification.

Figure 6.5.A shows the frame classification of a twin that was not detected by
the automated system. In this example, both fetuses lie in cephalic presentation.
The frame classification only shows the fetal head at the start sweep 1 and sweep
3 and the system was therefore not able to distinguish the two fetuses and detect
the twin pregnancy. Figure 6.5.B. shows frame 32 of sweep 3 of this undetected
twin. This frame clearly shows the torsos of two fetuses. This frame was therefore

Figure 6.4: Frame classification of two correctly detected twins. For both twins, one

fetus lies in cephalic presentation and the other fetus in breech presentation, which

makes it possible to distinguish the two fetuses with the use of the automated frame

classification.
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Figure 6.7: Frame classification of two fetuses in breech presentation that were cor-

rectly detected. The fetal head (depicted in dark and light blue) is located above the

torso (depicted in green).

Figure 6.8: A: frame of the OSP data which shows the bladder abnormality of a fetus

in cephalic presentation that was incorrectly classified as breech. B: Frame of the OSP

data that shows a fetus with hydrocephalus that was correctly classified as head.

Table 6.3: Abnormalities that are present in the 247 non-twins

Abnormality Occurrence

Antepartum hemorrhage 2

Placenta previa 8

Low-lying placenta 5

Abruption 1

Premature rupture of membranes 3

Oligohydramnios 5

Hydrocephalus 4

Intrauterine growth restriction 1

Macrosomia 1

Fetal ascites 1

Fetal lower urinary tract obstruction 1

Intrauterine Fetal Death 1

Total 33

110 Preforming prenatal ultrasound without a trained sonographer

Figure 6.6: . Scatterplot with the reference GA on the x-axis and the automatically

estimated GA on the y-axis. Two confidence intervals of the Hadlock curve are shown

in black dashed lines.

6.3.4 Determine fetal presentation

A total of 216 cephalic and 31 breech presentations were evaluated in this study
(Figure 6.2). All 31 fetuses in breech presentation were correctly detected by the
automated system. Figure 6.7 shows two examples of correctly classified breech
presentations, where the frames classified as fetal head is located above the fetal
torso. Figure 6.3.C. shows an example of a fetus in cephalic presentation, where the
frames classified as fetal head are located below the fetal torso. Only one fetus in
cephalic presentation was misclassified as breech. This fetus showed severe ascites,
which resulted in a misclassification of fetal abdomen and therefore breech presen-
tation was incorrectly inferred. One frame of the OSP of this fetus is shown in Figure
6.8.A, which closely resembles a fetal head with hydrocephalus. Figure 6.8.B. shows
a frame of one of the four fetuses with hydrocephalus. This frame was correctly clas-
sified as fetal head and shows resemblance with the Figure 6.8.A. Table 6.3 gives an
overview of all abnormalities present in 33 of the 247 non-twin datasets (13%).
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Figure 6.7: Frame classification of two fetuses in breech presentation that were cor-

rectly detected. The fetal head (depicted in dark and light blue) is located above the

torso (depicted in green).

Figure 6.8: A: frame of the OSP data which shows the bladder abnormality of a fetus

in cephalic presentation that was incorrectly classified as breech. B: Frame of the OSP

data that shows a fetus with hydrocephalus that was correctly classified as head.

Table 6.3: Abnormalities that are present in the 247 non-twins

Abnormality Occurrence

Antepartum hemorrhage 2

Placenta previa 8

Low-lying placenta 5

Abruption 1

Premature rupture of membranes 3

Oligohydramnios 5

Hydrocephalus 4

Intrauterine growth restriction 1

Macrosomia 1

Fetal ascites 1

Fetal lower urinary tract obstruction 1

Intrauterine Fetal Death 1

Total 33
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estimated GA on the y-axis. Two confidence intervals of the Hadlock curve are shown

in black dashed lines.
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6



6.4 Discussion 113

days in the second trimester compared to the CRL measurement which was obtained
in the first trimester117.The CRL measurement was not performed for the studied
population in this paper, so a direct comparison is not possible, but it indicates that
there is room for improvement. It has to be investigated if these improvements will
be made with a more accurate automated system, a better reference standard or with
an improved OSP data acquisition.

6.4.3 Determine fetal presentation

The system was able to detect all 31 fetuses in breech presentation. Only one fetus in
cephalic presentation was misclassified as breech. This fetus showed severe ascites,
which resulted in a misclassification of fetal abdomen. The automated system is ro-
bust for other abnormalities, like hydrocephalus. The presentation was determined
for all 247 non-twins with a GA variating from 17-40 weeks. The fetal presentation is
not relevant at an earlier point in pregnancy since the fetus can freely move around,
so the automatically estimated GA could potentially be used to determine whether
the estimated fetal presentation is presented to the user.

6.4.4 Clinical implications

The present system can automatically detect three maternal risk factors. Any health-
care worker can be trained to obtain this data within a day, which would make wide-
spread maternal risk screening with low-cost ultrasound much cheaper and easier
to implement. When implementing such a system in resource-limited settings, it is
very important to take into consideration how the patient management and follow-
up is taken care of after an increased maternal risk is detected. This is out of the
scope of this study. But detection is the first step to be able to set up obstetric man-
agement, which would include patient referral to health care centers or hospital to
receive follow-up. Future improvements could bring the automated system close to
the level of a trained sonographer for these tasks, but the automated system is at
this moment not of added value when a trained sonographer is present. A trained
sonographer can estimate the GA more accurately and will likely make less mistakes
in determining the fetal presentation and in the detection of twins. Future research
is required to investigate if it is possible to detect the heartbeat of the fetus in order
to determine if the fetus is alive101,if it is possible to estimate the amount of amniotic
fluid, or if polyhydramnios could be detected using the OSP. The presented frame
classification can be computed in real-time. This would make it possible to give real-
time feedback to the user during the acquisition of the OSP. For example, the user
could be notified which sweep to acquire next, when the transducer is detached from

112 Preforming prenatal ultrasound without a trained sonographer

6.4 Discussion

In this study we show that it is feasible to automatically detect twin pregnancies,
determine GA and distinguish fetuses in cephalic presentation from fetuses in breech
presentation with the use of six predefined free-hand sweeps acquired with a low-
cost ultrasound device. The system therefore shows potential to detect maternal risk
factors without a trained sonographer to both acquire and interpret the ultrasound
images for these tasks, making wide spread use of this method feasible in resource-
limited settings.

6.4.1 Detection twin pregnancies

The system was able to detect 61% of all twins. Even though not all twins were
detected, this automated detection of twins makes it possible to detect the majority of
the twin pregnancies which enables follow-up over time and the possibility to refer
these women in time to a hospital for delivery. Further improvement of the system
is required to be able to detect the other 39%. This could potentially be achieved by
segmentation of the fetus within the frames. The result of such an algorithm will
not only report which fetal body part is present in a frame, but will also segment
the body part. This would make it possible to distinguish two fetuses when they
lie in the same presentation, since it is possible to count the number of fetal body
parts in one frame. The three non-twins that were classified as twin all presented an
abnormality as mentioned in the Results section. More data from fetuses showing
these abnormalities are required to resolve these misclassifications in the future. It
should be noted that the included 280 datasets had a very high prevalence of twin
pregnancies (12%).

6.4.2 Estimate gestational age

The GA could be automatically estimated with a median difference of -0.4 days with
an IQR of 15.2 days compared to the reference GA. The confidence interval of the
Hadlock curve shows that the GA can be estimated more accurately in the second
trimester compared to the third trimester. The results also show that the IQR of the
automated estimated GA in the second trimester of 9.3 days is smaller than the IQR
of 16.7 days in the third trimester. This means that the system can automatically
estimate the GA with a difference of less than five days compared to the reference
HC in fifty percent of the cases. In previous work we have manually estimated the
GA using the OSP acquired with the MicrUs from fifteen pregnant women in the
Netherlands. The result showed a median difference of -0.2 days with an IQR of 4.4
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the abdomen of the pregnant women and when there is not enough gel used during
acquisition of the data. This could further improve data acquisition of the OSP and
decrease the number of scans that need to be excluded in future studies.

6.4.5 Study limitations

The GA in our study population varied between 17 and 40 weeks. It was therefore
not possible to test the feasibility of this system in the first trimester. However, it
is very difficult to obtain data of the first trimester in resource-limited settings since
most pregnant women do not visit a health care clinic or hospital during the first
trimester. We had to exclude 38 cases as described in Table 6.2. The automated
detection of fetuses in transverse and oblique presentation was not possible, because
not enough samples were available. More data would be required to ensure robust
detection of fetuses in transverse and oblique presentation.
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to give real-time feedback to the user when acquiring the OSP. An easy to use user
interface should be designed to enable guided acquisition of the OSP. For example,
the user should be notified which sweep to acquire next, get feedback when the
ultrasound transducer does not make proper contact with the skin of the pregnant
women, get a notification when a total of 100 frames is acquired and show the results
of the algorithm on the screen after acquisition of all six sweeps is completed. The
automated evaluation should also include quality control to ensure that the acquired
sweep data is of sufficient quality to perform the measurements. Otherwise the user
should be instructed immediately to acquire the OSP again.

A next step would be the introduction of this prototype to midwives in resource-
limited settings. During this process it is very important to check if the midwives are
able to correctly use the device. DeStigter et al. 6 mentioned that this OSP could be
taught to any health care worker within a day. During my Ph.D. research period, I
have visited the maternal health care clinic in Wolisso, Ethiopia, and provided train-
ing to local midwives who had never used ultrasound before. This training showed
us that it was indeed possible to explain the basic procedures to them in an on-the-
spot training session of a few hours.

If health care workers are allowed by local authorities to obtain the OSP, there
should be a proper patient referral system that takes care of pregnant women when
the system detects maternal risk factors. By closely monitoring the referred patients
it would be possible to monitor the performance of the automated system and to im-
prove it if necessary. Ultimately, it could be possible to follow-up referred pregnant
women and check if the number of maternal mortality decreases as a consequence
of the automated detection and inclusion of ultrasound in maternal care.

It is important to manage the expectations of the users when such a system is
introduced. The system is not (yet) able to detect all maternal risk factors, and it is
also not perfect in the tasks it can perform. It should therefore be clear to a health
care worker what the system cannot do. For example: the automated system will not
report the gender of the fetus. This is an important recommendation of the WHO on
antenatal care for ultrasound2: ”ultrasound sexing of the fetus in some low-income
countries has a negative impact on gender equity and needs to be monitored”. Since
there is no trained sonographer required to use this system, it will ensure that there
is no negative impact on gender equity.

Future research

The computer algorithms presented in this thesis did not perform perfectly and they
do not detect all maternal risk factors that were recommended by the WHO2, which
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In this thesis, we show that it is possible to automatically detect maternal risk fac-
tors with the use of a low-cost ultrasound device in a resource-limited setting. The
algorithms presented in this thesis show the potential to automatically detect twin
pregnancies, estimate gestational age and determine fetal presentation with the use
of the obstetric sweep protocol (OSP). The OSP consists of six predefined free-hand
sweeps over the abdomen of a pregnant woman, which can be taught to any health
care worker within one day. The combination of the OSP and the computer algo-
rithms developed in this thesis therefore obviates the need to extensively train a
sonographer to obtain the correct images and detect these three maternal risk factors.
This would make widespread obstetric ultrasound affordable and fast to implement
in resource-limited settings, where there is a severe shortage of well-trained medical
personnel.

Contrary to the teleradiology solution advocated by DeStigter et al. 6, this ap-
proach does not require an internet connection since the algorithms can run on the
device itself. Together with the use of a low-cost ultrasound device that can be con-
nected to a laptop or tablet makes this a portable solution that can be used in rural
areas. When maternal risks are detected at an early stage in pregnancy, it allows
pregnant women to be referred in time to a hospital to receive the medical attention
they need. This is especially of importance in resource-limited settings, where health
care services are limited and therefore could require a substantial amount of travel
time to reach. This solution would give pregnant women enough time to travel to a
medical facility to receive treatment and therefore has the potential to decrease the
number of maternal deaths in resource-limited settings.

Deployment in resource-limited settings

We have shown feasibility of automated detection of three maternal risk factors with
the use of the OSP that was acquired by a gynecologist in Wolisso, Ethiopia. De-
ployment of these algorithms in resource-limited settings is not an easy task that
will include many challenges. In this paragraph we will only focus on the technical
challenges of such a deployment.

The first step for deployment of this system in resource-limited settings would be
integration of the automated image analysis algorithms with the ultrasound device
on a laptop or tablet. This integration should include a robust encapsulation of the
ultrasound device with the laptop or tablet. The algorithms were developed on high-
end graphics cards after all the data was acquired. All algorithms were designed to
run with low hardware requirements and it should therefore be possible to run the
algorithms during acquisition of the ultrasound data. This would make it possible
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and additional sweeps could be made as well. Such a 3D volume could potentially
allow the 3D reconstruction of the complete fetus, which might make more accurate
measurements of the fetus possible.

Low-cost ultrasound devices

In Chapter 2 of this thesis, the development of a very low-cost ultrasound device was
described. The production cost of this device was aimed less than $100 and showed
promising in vivo results for obstetric care. Unfortunately, Chapter 3 showed that
the low frame rate impede the use of this ultrasound device to obtain the gestational
age from the acquired OSP. It was therefore not possible to combine this device with
the automated image processing algorithms developed in this thesis. Luckily, two
other low-cost devices were able to acquire the OSP. Chapter 6 showed the use of one
of these two devices in combination with the developed algorithms to automatically
determine maternal risk factors using OSP data that was acquired from 280 pregnant
women in Ethiopia. Unfortunately, this still leaves a gap between the aimed costs for
ultrasound in resource-limited settings as introduced in Figure 1.4.

This gap might be closed in the future through the use of a capacitive microma-
chined ultrasonic transducer (CMUT). CMUTs have been introduced in the 1990s126,
but it took two decades before this technique reached the medical field. The advan-
tage of CMUT is that the production costs are lower compared to the conventional
transducers that use piezo-electric elements, because they can be integrated with the
electronics on a single chip. An additional advantage is that these transducers have
a wide frequency bandwidth. This makes it possible to image the complete human
body with the use of one ultrasound probe, where the conventional piezo-electric
element-based transducers require a different transducer when the imaging depth
varies. In 2017, Butterfly Network introduced the iQ, which is a CMUT based ultra-
sound device that can be purchased for $2k. With this device they are not only the
first company that can image the complete human body with one transducer, but the
device can also be connected to a smartphone, which makes it possible to carry it in
your pocket.

Ultrasound devices have become more portable in the last decades due to the
innovations in portable devices like laptops, tablets and smartphones. This enables
the development of more applications for ultrasound imaging, since you can bring
the ultrasound device to any desirable location. Apart from the Butterfly Network
iQ, there are many other vendors that have recently introduced portable ultrasound
devices to the market: Philips Lumify, GE Vscan Extend, Telemed MicrUs, Interson
SiMPLi and Clarius Wireless Scanner. This shows a trend which could lead to an
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leaves room for improvements in the future.

The computer algorithm presented in Chapter 6 was not able to detect twins
when they are positioned in the same presentation. This could potentially be solved
in the future by replacing the frame classification with a fetal segmentation. The
result of such an algorithm will not only report which fetal body part is present in
a frame, but should also segment the body parts. This would make it possible to
distinguish two fetuses when they lie in the same presentation, since it is possible to
count the number of fetal body parts in one frame.

Future research could investigate how accurate the fetal growth could be moni-
tored when the gestational age is automatically estimated multiple times during one
pregnancy. When the gestational age can be estimated very accurately, it would be
possible to detect intra-uterine growth restrictions.

Improvements could also be made by automatically detecting other maternal
mortality risks apart from the three risks that were investigated in this thesis. The
report from the WHO2 mentioned four other important maternal risk factors that
are of importance in resource-limited settings which could be detected using ultra-
sound imaging: fetal anomalies, placenta previa, polyhydramnios and fetal viability.
Maraci et al. 101 showed feasibility of automatically detecting the fetal heart using a
single sweep acquired with a mid-range ultrasound device at the University of Ox-
ford. However, they could not investigate if it was possible to detect intrauterine
fetal death (IUF), because the data used in that study did not contain fetuses with a
non-beating heart. The OSP data of the 247 included non-twins of Chapter 6 only
included one IUF, which shows that it will be difficult to gather enough data for a
robust evaluation of the detection of IUF.

Future research could also investigate if it is possible to use the OSP to auto-
matically estimate the amount of amniotic fluid to detect polyhydramnios or oligo-
hydramnios and to automatically determine the position of the placenta to detect
placenta previa.

In this thesis we made use of the OSP as introduced by DeStigter et al. 6, which
consists of six predefined sweeps over the abdomen of the pregnant woman. We
did not investigate any improvements for this acquisition protocol. The automated
frame classification enables real-time feedback to the user. This feedback could be
used to optimize the OSP or to explore different strategies to acquire the data. The
sweeps can be made quickly, so acquiring a few more sweeps is certainly feasible.

It would also be interesting to investigate if it is possible to create a 3D volume
from the six sweeps. Prevost et al. 125 showed that it is possible to use deep learning
to reconstruct 3D volumes from free-hand ultrasound sweeps. The six sweeps of the
OSP contain some overlap, which could also be exploited to reconstruct a 3D volume
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placenta previa.

In this thesis we made use of the OSP as introduced by DeStigter et al. 6, which
consists of six predefined sweeps over the abdomen of the pregnant woman. We
did not investigate any improvements for this acquisition protocol. The automated
frame classification enables real-time feedback to the user. This feedback could be
used to optimize the OSP or to explore different strategies to acquire the data. The
sweeps can be made quickly, so acquiring a few more sweeps is certainly feasible.
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to reconstruct 3D volumes from free-hand ultrasound sweeps. The six sweeps of the
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7

Ultrasound devices have become more portable in the last decades due to the
innovations in portable devices like laptops, tablets and smartphones. This enables
the development of more applications for ultrasound imaging, since you can bring
the ultrasound device to any desirable location. Apart from the Butterfly Network
iQ, there are many other vendors that have recently introduced portable ultrasound
devices to the market: Philips Lumify, GE Vscan Extend, Telemed MicrUs, Interson
SiMPLi and Clarius Wireless Scanner. This shows a trend which could lead to an
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works presented in this thesis, but all presented networks were reduced in size as
much as possible to be able to use them with low-end GPU cards. It is important to
realize that the training of deep learning networks takes much more time compared
to the time for application of a trained network (test time is typically very low). But
a GPU is probably required to be able to run these networks in real-time during ac-
quisition of the data. Low-cost laptops and tablets currently do not include a GPU
that can be used to run deep learning networks. Fortunately, Intel R© introduced the
MovidiusTM Neural Compute Stick in 2017. This stick has the size of a USB stick and
contains GPU card that is specially designed to run deep learning applications with
low power consumption. Such a stick makes it possible to turn each low-cost device
into a system for deep learning computations in a cheap way. With the additional
advantage that it would not be required to send data into the cloud, which preserves
patient privacy. Similar devices from other manufacturers are also available, and,
in the near future, low-cost chips that can run reasonably simple networks may be
included in low-cost hardware.

Beyond maternal care

The work described in this thesis is limited to automated image analysis for mater-
nal care in resource-limited settings with 2D ultrasound. But the field of medical
ultrasound is not limited to maternal care. In this paragraph we will look beyond
maternal care to touch upon future developments of ultrasound and the role of CAD
systems in this field.

In recent years, electronics have become smaller and devices have therefore be-
come more portable. A good example is the smartphone, which was introduced
around the beginning of this century. In less than two decades, the smartphone
is present in the pocket of almost every individual each day. Computer proces-
sors have become more powerful and the well-known Moore’s law127 states that
computer processors will double in power every two year. When combining more
portable and powerful electronics with new techniques that make ultrasound trans-
ducers cheaper, it may be possible to use ultrasound everywhere. Roy Filly wrote an
Editorial in Radiology in 1988 entitled Ultrasound: The Stethoscope of the Future,
Alas128 in which he states:

As we look to the proliferation of US instruments into the hands of untrained physicians,
we can only come to the unfortunate realization that diagnostic sonography truly is

the next stethoscope: used by many, understood by few.
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increase in the point-of-care use of ultrasound imaging. The consequence of such
a development is that either a lot more sonographers need to be trained to be able
to use these devices, or sophisticated computer algorithms need to be developed to
automatically obtain the correct image and interpret it for diagnosis.

Computer-aided diagnosis

During this PhD project, the field of computer-aided diagnosis in medical imaging
has made a transition from classical machine learning towards deep learning. The
classical machine learning approach required the process of manually crafting fea-
tures for a specific task. Especially for ultrasound it is a difficult task to develop
hand-crafted features that are robust to several artifacts commonly present in the
images. This made the introduction of widely used algorithms for ultrasound im-
ages more challenging compared to other medical imaging modalities like computed
tomography and magnetic resonance imaging. The introduction of deep learning
made it possible to create algorithms that are robust to ultrasound artifacts which
could be developed in a more time efficient way. This could boost the number of
CAD systems for ultrasound images in the future.

In Chapter 4 we still used the classical machine learning approach for the mea-
surement of the fetal head circumference, but this algorithm was replaced by a deep
learning approach in Chapter 5. It took much less time to optimize the deep learning
system compared to the classical machine learning approach. Another advantage
was that the post-processing steps—like dynamic programming—were not required
for robust estimation of the head circumference using the deep learning approach,
since the deep learning network was more robust to artifacts compared to the ran-
dom forest classification. The classical machine learning approach was still used to
detect twin pregnancies and determine the fetal presentation given the frame clas-
sification in Chapter 6, since there was not enough data to train a deep learning
network to perform these tasks.

Data availability is a very important to be able to train a deep learning network.
In this thesis we have developed several deep learning networks that give high per-
formance on an independent test set, using OSP data of a few hundred patients. But
the amount of required data is very dependent on the task that is given to the sys-
tem. All developed deep learning networks were only trained on data acquired with
one ultrasound device, so it is unknown if these systems need to be retrained on
data from different vendors. Transfer learning was not applied in this thesis, but this
could be applied when the data limitation plays a limiting factor in future research.

High-end GPU cards were used for the development of the deep learning net-
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122 General discussion

Today, 30 years later, there is an entire field called point-of-care ultrasound
(POCUS), that brings ultrasound imaging to wherever a patient is being treated. This
shows that ultrasound imaging is more widely used than ever129,130. Even though
there are more physicians these days that know how to use ultrasound devices com-
pared to 30 years ago, we can agree with Roy Filly that it is still very important to
train a sonographer, because they need to know how to obtain and interpret the ul-
trasound images. In this thesis we show that it is possible to use ultrasound imaging
without the use of a trained sonographer with the use of CAD systems. This shows
that it will be possible to guide untrained users in obtaining useful images and aid-
ing the user in making the correct diagnosis. With the use of deep learning, this ap-
proach could be applied for several other tasks. The iQ ultrasound transducer from
Butterfly Network already uses computer algorithms to guide the user in obtained
the correct imaging plane using guiding arrows on the screen of the smartphone and
the software informs the user in real-time how useful the acquired image is.

The trend to make ultrasound devices more portable could result in new areas
where ultrasound imaging could be useful for making a diagnosis. The football club
PSV started to use the Philips Lumify in 2017 to make early diagnosis of injuries and
provide acute care to their players. This gives the medical staff the option to make
a point-of-care diagnosis. CAD systems could play a very important role in the next
step for wide application of these portable ultrasound devices where easy to use ul-
trasound imaging could be beneficial. These systems could potentially aid untrained
personnel to acquire ultrasound image with sufficient quality which could be auto-
matically analyzed to give a diagnosis. One can think of a general practitioner, use
at home, or even in a standard emergency kit. This could only be achieved when
easy to use acquisition protocols can be performed by any user under the guidance
of a CAD systems to acquire the ultrasound images in combination with algorithms
that automatically interpret the images to form a diagnosis on the spot.

The decrease in cost of ultrasound devices could make 3D ultrasound more widely
available. CAD systems could play a role in analyzing this data, to simplify the use
of ultrasound and improve intra- and inter-observer variability. A reduction in hu-
man interaction could make ultrasound less observer dependent and make it more
user friendly, which are currently two important limiting factors of ultrasound imag-
ing. The 3D field of view would not require the observer to navigate to the correct
cross section, but only require the user to place the ultrasound traducer close to the
structure of interest. The computer algorithms could then be used to extract relevant
information, or even to extract information that cannot be extracted with array trans-
ducers. This could potentially lead to improvements in clinical care as we know it
today.
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to estimate the GA with the HC and AC, but not the FL using the SeeMore and the
MicrUs. The frame rate of the SESAS was too low to estimate the GA from the OSP.

Chapter 4 presents a computer aided detection (CAD) system for automated mea-
surement of the fetal HC in 2D ultrasound images obtained in the standard plane for
all trimesters of the pregnancy. The data for this study was acquired with a high-
end ultrasound device in the Netherlands. The CAD system makes use of a classical
machine learning approach, in which Haar-like features were computed from the ul-
trasound images to train a random forest classifier to locate the fetal skull. The HC
was extracted using the Hough transform, dynamic programming and an ellipse
fit. The results show that the CAD system performs comparable to an experienced
sonographer and shows similar or superior results compared to systems published
in literature. This is the first automated system for HC assessment that is evaluated
on a large test set which contains data of all trimesters of the pregnancy.

Chapter 5 presents two deep learning networks for automated estimation of the
GA by estimating the HC with the use of the OSP. The data for this study was ac-
quired with a mid-range ultrasound device in Ethiopia. First, a VGG-Net103 inspired
network was trained to automatically detect the frames in the OSP data which con-
tained the fetal head. Second, a U-net110 inspired network was trained to automati-
cally measure the HC for all frames in which the first network detected a fetal head.
The HC was estimated from these frame measurements and the curve of Hadlock
et al. 112 was used to determine the GA. The results show that it is possible to auto-
matically estimate the GA from the OSP data that was obtained in Ethiopia.

Chapter 6 presents an extension of the system presented in Chapter 5. This sys-
tem cannot only estimate the GA, but also detects twin pregnancies and determine
fetal presentation using the OSP which was acquired with a low-cost ultrasound de-
vice in Ethiopia. The automated system is able to correctly detect 61% of all twins
with a specificity of 99%. The GA can be estimated with a median difference of -0.4
days and an interquartile range of 15.2 days. The system was able to correctly detect
all 31 fetuses in breech presentation and only incorrectly classified one of the 216
fetuses in cephalic presentation as breech.

The results of this thesis show the potential use of image analysis to automatically
detect twins, estimate GA and determine fetal presentation using the OSP, making
it possible to detect these risk factors without a trained sonographer. This approach
can therefore vastly reduce time and costs that are required to train sonographers in
resource-limited settings. The presented system could potentially bring ultrasound
in reach for pregnant women in resource-limited countries, making it possible to
better manage obstetric care and refer pregnant women in time to a health care clinic
to receive required treatment when maternal risk factors are detected.

124 Summary

Worldwide, 99% of all maternal deaths occur in developing countries. In absolute
numbers, this corresponds to approximately 820 deaths per day1. Ultrasound imag-
ing can be used to detect maternal risk factors, but too often remains out of reach
for pregnant women in developing countries. This is mainly caused by two reasons:
ultrasound is too expensive for resource-limited countries and it requires a trained
sonographer to acquire and interpret the ultrasound images, while there is a severe
shortage of well-trained medical personnel in these countries3–5. In this thesis we
aim to solve this problem by combining low-cost ultrasound devices with the ob-
stetric sweep protocol (OSP) and automated image analysis. The OSP consists of
six predefined free-hand sweeps with the ultrasound transducer over the abdomen
of the pregnant woman. The OSP can be taught to health care workers without
prior knowledge of ultrasound within one day and thus avoid the need of a trained
sonographer to acquire ultrasound images. By combining the OSP with low-cost
ultrasound devices and combining it with automated image analysis, it was investi-
gated if it is possible to automatically determine maternal risk factors and therefore
avoid the need of a trained sonographer to both acquire and interpret the ultrasound
images.

Chapter 2 describes the development of a very low-cost medical ultrasound de-
vice with an aimed production cost of less than $100, which is an order of magnitude
lower than any other ultrasound system on the market today. The hardware costs
were reduced by replacing the array of piezo-electric elements by a single piezo-
electric element, which was mechanically swept across the target scene. Next to
this, synthetic aperture focusing was used instead of fixed focusing to form the ul-
trasound image. This approach was evaluated using simulations, phantom experi-
ments and in vivo experiments. A prototype—the single element synthetic aperture
scanner (SESAS)—was built to perform the in vivo measurements. The simulations
and phantom experiments show that the achievable lateral resolution of the pre-
sented approach is superior compared to the fixed focus approach but also reveal
a lower signal to noise ratio. Consequently, the in vivo acquisitions show limited
application of the SESAS for clinical diagnostics in prenatal care.

Chapter 3 compares the SESAS to the SeeMore and the MicrUs which can be
purchased around $2k to $3k. It is investigated how accurately a sonographer can
estimate the gestational age (GA) using these low-cost ultrasound devices by mea-
suring the fetal head circumference (HC), abdominal circumference (AC) and femur
length (FL) using both the standard plane and the OSP. The GA was estimated with
the curve of Verburg et al. 39. The results show that the HC, AC and FL can be used to
estimate the GA using all three low-cost ultrasound devices from the standard plane
within the inter-observer variability presented in literature. The OSP can be used
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goedkoop echoapparaat. Het VOP kan worden gebruikt om de ZD te schatten met
de HO en de BO, maar niet de FL met behulp van de SeeMore en de MicrUs. De
beeld verversingsfrequentie van de SESAS was te laag om de ZD te schatten met het
VOP.

Hoofdstuk 4 presenteert een computeralgoritme die de foetale HO automatisch
kan meten in 2D echobeelden in alle trimesters van de zwangerschap. De beelden
voor deze studie zijn opgenomen met een high-end echoapparaat in Nederland. Het
algoritme maakt gebruik van een klassieke machine learning aanpak waarbij Haar-like
features werden berekend op basis van de echobeelden om een random forest classifier
te trainen om de schedel van de foetus te lokaliseren. De HO werd geëxtraheerd met
behulp van de Hough transform, dynamic programming en het fitten van een ellips. Uit
de resultaten blijkt dat de HO gemeten door het algoritme vergelijkbaar is met de HO
gemeten door een ervaren echografist. Het algoritme toont vergelijkbare of betere
resultaten in vergelijking met de systemen die in de literatuur zijn gepubliceerd. Dit
is bovendien het eerste geautomatiseerde systeem voor het meten van de HO dat is
geëvalueerd op een grote onafhankelijke test-set van 335 beelden afkomstig van alle
trimesters van de zwangerschap.

Hoofdstuk 5 presenteert twee deep learning netwerken voor een geautomatiseerde
schatting van de ZD door het schatten van de HO met behulp van het VOP. De data
voor deze studie is opgenomen met een middelklasse echoapparaat in Ethiopië. Het
eerste deep learning netwerk is geı̈nspireerd op het VGG-Net103 en is getraind om au-
tomatisch de beelden in de VOP te detecteren die het hoofd van de foetus bevatten.
Het tweede deep learning netwerk is geı̈nspireerd op het U-net110 en is getraind om
automatisch de HO te meten in alle beelden waar het eerste netwerk het hoofd van
foetus detecteerde. De ZD is vanuit deze metingen geschat met behulp van de curve
van Hadlock et al. 112. De resultaten tonen aan dat het mogelijk is om de ZD automa-
tisch te schatten met behulp van het VOP dat is opgenomen in Ethiopië.

Hoofdstuk 6 presenteert een uitbreiding van het systeem dat in hoofdstuk 5 is
gepresenteerd. Dit systeem kan niet alleen de ZD schatten, maar kan ook tweelin-
gen detecteren en de ligging van de foetus bepalen met behulp van het VOP dat was
opgenomen met een goedkoop echoapparaat in Ethiopië. Het geautomatiseerde sys-
teem is in staat om 61% van alle tweelingen te detecteren met een specificiteit van
99%. De ZD kan worden geschat met een verschil in de mediaan van -0,4 dagen
en een interkwartielafstand van 15,2 dagen. Het systeem was in staat om alle 31
foetussen in stuitligging correct te detecteren en classificeerde slechts één foetus in
achterhoofdsligging ten onrechte als stuitligging.

De resultaten van dit proefschrift tonen de dat het mogelijk is om met beeldana-
lyse algoritme automatisch tweelingen te detecteren, de ZD te schatten en de ligging
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Wereldwijd vindt 99% van alle moedersterfte plaats in ontwikkelingslanden. In ab-
solute getallen komt dit overeen met ongeveer 820 sterfgevallen per dag1. Ultrage-
luid kan worden gebruikt om zwangerschapsrisicos te detecteren, maar deze tech-
niek blijft vaak buiten het bereik van zwangere vrouwen in ontwikkelingslanden.
Dit wordt voornamelijk veroorzaakt door twee problemen. Enerzijds is echografie
te duur voor landen met beperkte middelen. Daarnaast is er een echografist nodig
om de echobeelden te maken en deze te interpreteren, terwijl er in deze landen een
ernstig tekort is aan goed opgeleid medisch personeel. In dit proefschrift willen we
deze twee problemen oplossen door het combineren van goedkope echoapparatuur
met het verloskundig opname protocol (VOP) en geautomatiseerde beeldanalyse.
Het VOP bestaat uit zes vooraf gedefinieerde opnamebewegingen met de echotrans-
ducer over de buik van de zwangere vrouw. Het VOP kan binnen één dag aan een
vroedvrouw worden geleerd die geen voorafgaande kennis van ultrageluid heeft,
waardoor het niet nodig is om een echografist op te leiden voor het maken en het
interpreteren van de echobeelden.

Hoofdstuk 2 beschrijft de ontwikkeling van een zeer goedkoop medisch echoap-
paraat met een beoogde kostprijs van minder dan 100 USD per stuk. Dit is een order
van grootte lager dan enig ander echoapparaat dat momenteel op de markt verkrijg-
baar is. De kosten zijn gereduceerd door het vervangen van de rij piëzo-elektrische
elementen door één enkel piëzo-elektrisch element dat mechanisch wordt bewogen
over het af te beelden weefsel. Daarnaast is er gebruik gemaakt van synthethic aper-
ture focusing in plaats van een vast focus om het echobeeld te vormen. Deze aanpak
is geëvalueerd met behulp van simulaties, en opnames van fantomen en van zwan-
gere vrouwen. Voor deze opnames is een prototype, genaamd single element syn-
thethic aperture scanner (SESAS), ontwikkeld. De simulaties en de opnames van de
fantomen tonen aan dat de laterale resolutie van de gepresenteerde aanpak beter is
dan een vast focus, maar laat ook een lagere signaal-ruisverhouding zien. De SESAS
toonde gelimiteerde toepassingen voor het gebruik van dit apparaat voor prenatale
diagnostiek.

Hoofdstuk 3 vergelijkt de SESAS met twee andere goedkoper echoapparaten,
de SeeMore en de MicrUs, die voor ongeveer twee- tot drieduizend USD kunnen
worden aangeschaft. Er is onderzocht hoe nauwkeurig een echografist met behulp
van deze goedkope echoapparatuur de zwangerschapsduur (ZD) kan bepalen door
het meten van de foetale hoofdomtrek (HO), de buikomtrek (BO) en de femurlengte
(FL) met behulp van zowel de standaarddoorsnede als het VOP. De ZD is bepaald
met behulp van de curve van Verburg et al. 39. De resultaten tonen aan dat de HO,
BO en FL kunnen worden gebruikt om de ZD binnen de inter-observer variabiliteit
af te schatten met behulp van de standaarddoorsnede die is opgenomen met een
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goedkoop echoapparaat. Het VOP kan worden gebruikt om de ZD te schatten met
de HO en de BO, maar niet de FL met behulp van de SeeMore en de MicrUs. De
beeld verversingsfrequentie van de SESAS was te laag om de ZD te schatten met het
VOP.

Hoofdstuk 4 presenteert een computeralgoritme die de foetale HO automatisch
kan meten in 2D echobeelden in alle trimesters van de zwangerschap. De beelden
voor deze studie zijn opgenomen met een high-end echoapparaat in Nederland. Het
algoritme maakt gebruik van een klassieke machine learning aanpak waarbij Haar-like
features werden berekend op basis van de echobeelden om een random forest classifier
te trainen om de schedel van de foetus te lokaliseren. De HO werd geëxtraheerd met
behulp van de Hough transform, dynamic programming en het fitten van een ellips. Uit
de resultaten blijkt dat de HO gemeten door het algoritme vergelijkbaar is met de HO
gemeten door een ervaren echografist. Het algoritme toont vergelijkbare of betere
resultaten in vergelijking met de systemen die in de literatuur zijn gepubliceerd. Dit
is bovendien het eerste geautomatiseerde systeem voor het meten van de HO dat is
geëvalueerd op een grote onafhankelijke test-set van 335 beelden afkomstig van alle
trimesters van de zwangerschap.

Hoofdstuk 5 presenteert twee deep learning netwerken voor een geautomatiseerde
schatting van de ZD door het schatten van de HO met behulp van het VOP. De data
voor deze studie is opgenomen met een middelklasse echoapparaat in Ethiopië. Het
eerste deep learning netwerk is geı̈nspireerd op het VGG-Net103 en is getraind om au-
tomatisch de beelden in de VOP te detecteren die het hoofd van de foetus bevatten.
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opgenomen met een goedkoop echoapparaat in Ethiopië. Het geautomatiseerde sys-
teem is in staat om 61% van alle tweelingen te detecteren met een specificiteit van
99%. De ZD kan worden geschat met een verschil in de mediaan van -0,4 dagen
en een interkwartielafstand van 15,2 dagen. Het systeem was in staat om alle 31
foetussen in stuitligging correct te detecteren en classificeerde slechts één foetus in
achterhoofdsligging ten onrechte als stuitligging.

De resultaten van dit proefschrift tonen de dat het mogelijk is om met beeldana-
lyse algoritme automatisch tweelingen te detecteren, de ZD te schatten en de ligging
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van de foetus te bepalen met behulp van het VOP. Hierdoor is het mogelijk om deze
risicofactoren te detecteren zonder een echografist te hoeven opleiden. Deze aanpak
kan de tijd en kosten die nodig zijn om echografisten op te leiden in ontwikkelings-
landen aanzienlijk verminderen. Het gepresenteerde systeem heeft de potentie om
ultrageluid te introduceren bij zwangere vrouwen in ontwikkelingslanden, waar-
door het mogelijk wordt om de verloskundige zorg te verbeteren en zwangere vrou-
wen op tijd door te verwijzen naar een ziekenhuis indien er zwangerschapsrisicos
gedetecteerd zijn.
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Dagmar de Bruijn, heel erg bedankt voor alle keren dat ik heb mogen meelopen
op de afdeling prenatale diagnostiek, alle kennis die je met mij hebt gedeeld en alle
vragen die je hebt beantwoord hebben ervoor gezorgd dat mijn kennis over dit vak-
gebied erg is verbeterd. Ik vond onze samenwerking was heel prettig en gezellig.
Natuurlijk ook dank voor het testen van de SESAS en alle scans en annotaties die
gemaakt zijn voor de vergelijkingsstudie die staat omschreven in Hoofdstuk 3. Voor
deze laatste studie wil ik Desirée Moens en Anette Beverdam ook bedankten voor
hun hulp bij het verzamelen van de data. Jullie waren altijd vriendelijk en dachten
inhoudelijk mee vanuit een klinisch perspectief. Dit maakt dat ik altijd met veel ple-
zier richting de afdeling prenatale diagnostiek ging.

Daarnaast wil ik alle andere mensen bedanken die het mogelijk hebben gemaakt
dat ik de SESAS heb kunnen gebruiken in het Radboudumc: Tijs Rensen en Stef
Mientki voor alle hulp vanuit de instrumentele dienst, Roland Loeffen en Frank de
Lange voor alle hulp bij het maken van het IMDD. I would like to extend my gra-
titude to Rik Vos, Martin Verweij and Shreyas Ragunathan who helped with the
measurements of the acoustic output power of the SESAS.

A special thanks to Hezkiel Petros, Stefano Santini and Yonas Desta who made it
possible that the data from 500 pregnant women was acquired for the studies descri-
bed in Chapter 5 and Chapter 6. This would not have been possible without your
help. This data made the work described in this thesis much more important and
increased its impact. Next to this, I would like to thank you for your hospitality du-
ring my visits to the St. Luke’s Hospital in Wolisso. I learned a lot during my visits
and thank you for taking time out of your busy schedule for me.

Wessel Eijkman en Frank van Doren van MANGO consult. Dankzij jullie heb ik
veel geleerd van een hele interessante reis naar Ethiopië. Bedankt voor alle hulp en
ondersteuning die jullie hebben gegeven om de data acquisitie mogelijk te maken.
Daarnaast natuurlijk ook bedankt voor alle leuke en nuttige informatie over lokale
gebruiken. Dit maakte mijn reis naar Ethiopië een stuk interessanter en leuker.

De hulp van Nathalie Popken vanuit CORDAID aan het begin van mijn promotie
traject en de hulp van Simone Soeters tijdens mijn tweede reis naar Ethiopië. Door
de reorganisatie hebben we elkaar niet heel vaak gesproken tijdens dit project, maar
desondanks wil ik jullie hartelijk bedanken voor al jullie hulp.

148 Dankwoord

Gedurende mijn promotie heb ik veel mensen leren kennen die inhoudelijk hebben
bijgedragen aan het werk dat te lezen is in dit proefschrift en daarnaast hebben bijge-
dragen aan alle gezelligheid gedurende mijn promotie tijd. Ik had de eer om in twee
onderzoeksgroepen te mogen werken, waardoor ik twee keer zoveel wekelijkse ver-
gaderingen had, maar natuurlijk ook twee keer zoveel gezellige collega’s. Ik heb een
hele leuke en interessante promotietijd gehad en daarvoor wil ik een aantal mensen
in het bijzonder bedanken.

Allereerst wil ik mijn promotoren Bram van Ginneken en Chris de Korte bedan-
ken voor alle begeleiding en hulp die ik gedurende mijn promotie heb gekregen.
Ik vond het een mooie uitdaging om met dit project beide onderzoeksgroepen te
combineren. Het project sloot precies aan op wat ik interessant vond, namelijk het
combineren van medische beeldvormende en beeldverwerkings technieken met als
doel het ontwikkelen van een product. Ondanks dat mijn project relatief klein was,
kon ik altijd rekenen op jullie hulp. Hierdoor heb ik veel kunnen leren en heb ik
mijzelf zowel op professioneel en persoonlijk gebied kunnen ontwikkelen.

Daarnaast wil ik Guido Geerts, Frank Vijn, Fleur Posthumus en Susanne van Gils
van Delft Imaging Systems bedanken. Zonder jullie had dit project niet bestaan en
zonder jullie hulp en inzet had ik dit project niet zo goed kunnen uitvoeren. De rei-
zen naar Newcaslte en Ethiopië waren hoogtepunten in mijn promotie die ik samen
met jullie heb gemaakt. Ik vind het zeer bewonderingswaardig dat Delft Imaging
Systems in dit onderzoek investeert om zwangere vrouwen in ontwikkelingslanden
te helpen.

I would like to thank Jeff Neasham and Dave Graham for the development of the
SESAS device. This device was the reason that this project started in the first place.
I really enjoyed working with you and the possibility to discuss the technical details
which resulted in the article described in Chapter 2. It was a great pleasure to work
with you and I also enjoyed our visits to the pubs for some food and drinks during
my visits to NewCastle.

Veronique Wolbers, jij was degene die de allereerste beelden van een foetus heeft
gemaakt met de SESAS. De bereidwilligheid en hulp die je hebt geboden om het
prototype te kunnen testen en de inhoudelijke feedback die je met jouw klinische
ervaring hebt gegeven waren van groot belang aan het begin van dit project.
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Tot slot wil ik Eline natuurlijk heel erg bedanken voor je oneindige support, je luiste-
rend oor en alle hulp en liefde die je me de afgelopen jaren hebt gegeven. Inhoudelijk
kon ik altijd rekenen op je suggesties en ideeën die vaak net uit een andere invals-
hoek kwamen waardoor ik met een frisse blik naar mijn onderzoek kon kijken. Maar
waarschijnlijk nog veel belangrijker was dat jij ervoor zorgde dat we samen heel veel
leuke dingen ondernamen die ervoor zorgden dat ik niet bezig was met mijn pro-
motie, waaronder alle mooie reizen die we in de afgelopen jaren hebben gemaakt.
Zonder jou was mijn promotie tijd nooit zo leuk en gezellig geweest.
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I would like to thank Jan Moltz, Michael Schwier and Henning Kost from Fraun-
hofer Mevis. You performed the feasibility study that showed it was possible to
automatically measure fetal biometrics from 2D ultrasound images. This feasibility
study was included in the funding proposal and gave me a good starting point for
the development of the algorithms described in this thesis.

Alle collega’s van DIAG waarmee ik deze jaren een kamer heb mogen delen en een
hele gezellige tijd mee heb gehad. Mijn kamergenoten (kantoor 32&23!), Midas,
Ajay, Freerk, Mohsen, Babak, Sil, Bart, Cristina, Suzan en Kevin waarmee ik altijd
kon sparren over de inhoud van mijn onderzoek, maar misschien nog wel belang-
rijker alle gezellige borrels, activiteiten en persoonlijke verhalen die tot een mooie
vriendschap heeft geleidt die hopelijk ook na mijn promotie zal blijven bestaan. Ook
dank aan het RSE team en dan speciale dank voor alle hulp van Paul Gerke die altijd
klaar stond om mijn vragen vriendelijk te beantwoorden en voor alle support bij de
deep learning experimenten. James Meakin, thank you for all your help with grand-
challenge for both my project and the ISMI course. Alle andere collega’s van DIAG
wil ik natuurlijk heel erg bedanken voor de gezellige tijd in de groep, de borrels
en etentjes, de leuke tijd bij conferenties, de DIAG-weekenden en de feestjes Bram
Platel, Rashindra, Clarisa, Henkjan, Nico, Geert, Francesco, Colin, Sven, Sjoerd,
Jonas, Charlotte, Jan-Jurre, Rick, Albert, Leticia, Mark, Kaman, Arnoud, Gabriel,
Anton, Ecem, Péter, Meyke, David, Wouter, John-Melle en Oscar.

Collega’s van MUSIC, ook al zat ik gedurende mijn promotie niet bij jullie op de ka-
mer heb ik me wel altijd betrokken gevoeld bij de hechte club met alle leuke uitjes,
gezellige (kerst-)borrels en feestjes. Speciale dank voor Gert Weijers en Han Thijsen
die me hebben geholpen met de QA4US voor de SESAS. Daarnaast natuurlijk ook
alle andere MUSICI die me inhoudelijk hebben geholpen bij alle zaken die te maken
hebben met de beeldacquisitie en de gezellige tijd. Hierdoor voelde ik me helemaal
thuis in de groep Gijs, Kaj, Anne, Stein, Jan, Rik, Maartje, Khalid, Sonja, Sandra,
Jeroen, Shreya, Chuan, Anton, Leon en Roel.

Mijn familie, vrienden en in het bijzonder Harrie, Nicole, Tim, Karlijn, Franske,
Maarten, Erik, Mariette, Robert en Iboya. Jullie hadden altijd een luisterend oor
en lieten mij (soms met wat veel woorden) enthousiast over mijn onderzoeksproject
vertellen. Ook dachten jullie met mij mee en gaven jullie handige tips en suggesties.
Maar boven al kon ik altijd bij jullie terecht en hebben jullie mij veel steun en ver-
trouwen gegeven tijdens mijn promotie.
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