
                                                                                                                                            

M.A.Sc. Thesis, © K. Stegman, 2009 
 

 
 
 
 
 

Towards Detection of User-Intended Tendon Motion with 
Pulsed-Wave Doppler Ultrasound for Assistive Hand 

Exoskeleton Applications 
 
 
 
 
 
 

by 
 

Kelly J. Stegman 
 

B.Sc. Honours (Physics and Astronomy), University of Victoria, 2007 
Diploma (Physics), Camosun College, 2003 

 
A Thesis Submitted in Partial Fulfillment 

of the Requirements for the Degree of 
 

MASTER OF APPLIED SCIENCE 
 

in the Department of Mechanical Engineering 
 

 

 

 

 

© Kelly Stegman, 2009 
 

University of Victoria 
 

All rights reserved. This thesis may not be reproduced in whole or in part, by photocopy 
or other means, without the permission of the author 



  ii 

M.A.Sc. Thesis, © K. Stegman, 2009 
 

Supervisory Committee 
 
 

Towards Detection of User-Intended Tendon Motion with Pulsed-Wave 
Doppler Ultrasound for Assistive Hand Exoskeleton Applications 

 
by 
 

Kelly Stegman 
 

B.Sc. Honours (Physics and Astronomy), University of Victoria, 2007 
Diploma (Physics), Camosun College, 2003 

 
 
 
 
 
 
 
 
 
 

Supervisory Committee 
 
 
Dr. Edward J. Park, Department of Mechanical Engineering 
Co-Supervisor 
 
 
Dr. Ronald P. Podhorodeski, Department of Mechanical Engineering 
Co-Supervisor 
 
 
Dr. Nikolai Dechev, Department of Mechanical Engineering 
Departmental Member 
 
 
 



  iii 

M.A.Sc. Thesis, © K. Stegman, 2009 
 

Abstract 
 

Current bio-robotic assistive devices have developed into intelligent and 

dexterous machines. However, the sophistication of these wearable devices still remains 

limited by the inherent difficulty in controlling them by sensing user-intention.  Even the 

most commonly used sensing method, which detects the electrical activity of skeletal 

muscles, offer limited information for multi-function control. An alternative bio-sensing 

strategy is needed to allow for the assistive device to bear more complex functionalities. 

In this thesis, a different sensing approach is introduced using Pulsed-Wave Doppler 

ultrasound in order to non-invasively detect small tendon displacements in the hand. The 

returning Doppler shifted signals from the moving tendon are obtained with a new 

processing technique. This processing technique involves a unique way to acquire raw 

data access from a commercial clinical ultrasound machine and to process the signal with 

Fourier analysis in order to determine the tendon displacements. The feasibility of the 

proposed sensing method and processing technique is tested with three experiments 

involving a moving string, a moving biological beef tendon and a moving human hand 

tendon. Although the proposed signal processing technique will be useful in many 

clinical applications involving displacement monitoring of biological tendons, its uses are 

demonstrated in this thesis for ultrasound-based user intention analysis for the ultimate 

goal of controlling assistive exoskeletal robotic hands.  
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Chapter 1 
 
Introduction  
 
 

The present idea of wearable robotics stems from historical artificial limbs, which 

were mostly used as a supplement for balance and cosmetic appearance. The earliest 

artefacts discovered were two Egyptian toes (a wooden toe and a paper-mache toe) dating 

from as early as c.664 BC, and a Roman bronze leg from c.300 BC (Figures 1A, B). 

During the 15th and 16th centuries, many soldiers lost their limbs during battle and 

consequently they wore iron prosthetic arms, hands and legs afterwards. A French army 

surgeon, Ambroise Pare, is attributed to the design and implementation of the first 

mechanical hand, arm and articulated knee joint (Figures 1C - E) [1]. Lighter, wooden 

prosthetics soon followed during the Civil and World Wars along with advances in 

antiseptic and anaesthesia techniques (Figure 2A). These wars first introduced devices 

with artificial tendons and then emphasized creating life-like prostheses by using new 

plastics and computer aided design after World War II [2].  

Recently, robotic industrial grippers are being designed to mimic the hand’s 

anatomy [3, 4]. This is because the traditional end-effector tools are designed specifically 

for a task (or a family of similar tasks). Thus, different types of tools would be required 

in order to pick up various parts. It would be much more convenient to design a flexible 

hand robot to pick up various items by reconfiguring itself, instead of a rack of tools 

being constantly interchanged. These hand-like robots would be most useful in high 

precision or semi custom manufacturing (Figure 2B), and in biomedical applications such 

as a mobility extension on a wheelchair or testing software [4].  
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(A)        (B) 
 

 
(C)                                                  (D)          (E) 
Figure 1: (A) Egyptian toe prosthesis c.664BC [5], (B) Roman bronze leg prosthesis (copy) 
[6], and a 16th century hand (C), arm (D) and leg prostheses (E) designed by Ambroise Pare 
[7]. 
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(A)                                                                   (B) 
Figure 2: (A) Civil War Leg Prostheses circa 1865 [7], and (B) the Shadow Hand dexterous 
manipulator [8]. 
 

Although prosthetic devices have been introduced as early as ancient Egypt, 

exoskeletons have a much later history. First conjured up for fictional stories in the 

1930’s, the actual development of a light-weight and compact usable exoskeleton system 

has only recently been initiated [9-19]. Although the research in this area is limited, the 

increasing amount of reported hand injuries and disorders demonstrates a growing need 

for such an assistive device. These assistive devices serve as a general mobility aid by 

enabling the disabled and elderly to remain independent for longer periods (Figure 3). 

This may in turn help relieve the strain on the healthcare systems and help restore a 

significant quality to the lives of those affected. Such a permanent wearable device would 

have significant promise for use with hand injuries, reduced motor function, 

musculoskeletal disorders, and post stroke therapy of the hand.   

In terms of hand injuries, it has been shown that the stiffening of the hand joints 

and muscles was lessened when motion exercises were used more frequently [20-21].   

Also, approximately 795,000 people suffered a stroke in the United States alone last year 
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with about two-thirds of this group surviving the incident, but with many resulting issues 

in hand mobility [14, 17, 22-23]. The exoskeletons uses for those with easily fatigued 

hands could also range from astronauts losing muscle mass on long space flights to other 

musculoskeletal disorders such as early ALS (Amyotrophic Lateral Sclerosis) and MS 

(Multiple Sclerosis), as well as certain spinal fractures and work place injuries. In regards 

to work-related hand injuries, according to a WorkSafe BC study, injuries to fingers and 

hands ranked the highest in workplace incidents (more than 40% in 2006) [24]. This is an 

average of 14,500 hand injuries that is reported in BC per year, with 1 in 7 being work-

related. These work-related hand injuries cost approximately $6,000,000/year for 

healthcare and worker benefits to compensate over 50,000 lost workdays per year.  

Most of these disabled or injured people solely rely on rehabilitation therapists for 

treatment. However, due to a disproportionate ratio of patients to therapists, patients are 

often only seen once or twice per week. More frequent hand activity of patients would 

certainly be more beneficial, and this is where an assistive device for the hand will be 

useful. Unfortunately, most analogous mechanical devices on the market are rather large 

and rehabilitative in nature which makes it difficult to extend this technology for the 

purpose of assisting activities of daily living (Figure 4). 

 
Figure 3: An assistive exoskeleton device for the hand [19]. 
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Figure 4: The Hand Mentor TM from Kinetic Muscles Inc. is a rehabilitative hand 
exoskeleton used for therapeutic treatment [25]. 
 

The successful design of a wearable hand robot includes safety assessment, 

comfort, ease of use and interaction with the environment, mechanism optimization and 

most importantly, control strategies. Surprisingly, existing hand exoskeletons and 

prosthetics are generally less capable than that of service industrial robots. This is largely 

due to the man-machine interface and control problem. This fundamental task is quite 

daunting to many engineers because every mechanical design has the same problem of 

figuring out how the device can sense user intention to control the wearable robot. Real-

time intention recognition by sensing a user and its environment is thus a very important 

function for man-machine interaction. Topics related to vehicle sensors, energy 

management, virtual reality, military/security and biomedical applications, all require 

research into this fundamental topic in order to perfect the human-machine interface [26-

32].  

Using the natural body as a sensing mechanism is an elegant solution to enhance 

the usability and functionality of wearable robots.  These bio-sensors take advantage of 

the natural control processes which are optimized in humans (reasoning, planning and 

executing) in order to clearly identify user intention. On the other hand, mechanical 

sensing can reveal important information about positions, motions and forces which are 

crucial in control and design planning of wearable robots, and are often used in 
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conjunction with bio-sensors. Currently, electromyographic (EMG) signals dominate the 

bio-sensing market to detect user intention, while electroencephalography (EEG) or 

magnetoencephalography (MEG) signals are thought to be the future of user intended 

control. Other bio-sensing control methods to detect user intention may include 

myokinemetric (MK) signals, mechanomyography (MMG) signals, electrooculograpic 

(EOG) signals, voice-recognition control, tendon activated pneumatic (TAP), and 

ultrasonic sensing.    

1.1 Thesis Objectives   
 

The primary goal of the research presented in this thesis is to introduce a novel 

sensing strategy which uses Pulsed-Wave Doppler ultrasound for detecting user intended 

hand grasping. This new bio-sensing strategy is developed here specifically for the future 

application of hand exoskeleton control for persons with some residual hand function.  In 

particular, the following objectives of this research are defined:  

1) To determine the difficulties in the current strategies to sense user intention for bio-

robotic control, based on a thorough literature review. 

2) To identify the anatomical and functional capabilities of a healthy hand in order to 

determine an optimal sensing strategy to restore some of the motor abilities in 

disabled patients. 

3) To develop an original sensing strategy using Pulsed-Wave (PW) Doppler 

ultrasound to detect the velocity and displacement of a moving tendon in the wrist 

for the eventual use on an assistive exoskeleton. 

4) To develop a signal processing technique to test the feasibility of this new bio-

sensing method. 

5) To perform three experiments in order to test the accuracy of the new signal 

processing technique. These experiments include:  

(i) accurately measuring the small velocity and displacements of a moving string,  

(ii) accurately measuring the small velocity and displacements of a moving beef 

tendon, and   

(iii) accurately measuring the small velocity and displacements of a human 
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biological tendon and demonstrating the control of a robotic finger test-bed using 

the acquired measurements. 

6) To comment on the implications of the experimental results and the ability to 

expand into future works. 

1.2 Thesis Contribution   
 

Overall, the ability to detect tendon motion with Doppler ultrasound has 

significant academic contributions to current research in bio-robotic control and other 

medical sciences. Intended contributions to current research include: 

• Improving a method to non-invasively detect tendon motion and to 

quantify the tendon displacements, 

• Introducing a method to acquire and process raw Doppler signals from a 

commercial ultrasound machine, 

• Providing a novel sensing approach by using user-intended tendon motion 

for the eventual use of assistive hand exoskeleton control.  

1.3 Thesis Organization   
 

This thesis is divided into 10 chapters in order to address the above research 

objectives, and is outlined as the following. In Chapter 1, the background of wearable 

robotics, prostheses, exoskeletons and control strategies are introduced. The project 

objectives are also outlined in order to show the structure of this thesis. In Chapter 2, a 

literature review of the control strategies that are currently used for sensing user intention 

are described in detail. In Chapter 3, a healthy hand’s anatomical and functional structure 

is described in order to understand the hand’s capabilities and limitations. Chapter 4 

describes the physics of ultrasound. This chapter forms the basis to understand the 

background of the new bio-sensing method presented in this thesis. Chapter 5 describes 

the ultrasound device components and signal processing for Duplex Imaging. In Chapter 

6, the proposed techniques and methodology of the three experiments are outlined. 

In Chapter 7, the displacement measurement accuracy test for the string and beef tendon 

is described in detail. In Chapter 8, the robotic finger demonstration using the proposed 
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processing technique is described in detail.   Chapter 9 provides a discussion of the 

research presented in this thesis. In Chapter 10, conclusions are drawn concerning the 

feasibility of this new bio-sensing idea and the future potential is discussed.  
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Chapter 2 
 

Background: Sensing User Intention 
 

In order to implement a wearable assistive exoskeleton, a sensing and control 

strategy must be optimized. As previously stated, there exist several anatomically correct 

and sophisticated industrial robotic hands which are controlled by computers to perform 

pre-determined tasks. However, they cannot be used as a wearable assistive device for 

humans because there is no current way of detecting user intention to fully control these 

multi-DOF (degree-of-freedom) machines. Current bio-sensing methods which detect 

user intention include using electromyographic (EMG) signals, electroencephalography 

(EEG) signals, magnetoencephalography (MEG) signals, myokinemetric (MK) signals, 

mechanomyography (MMG) signals, electrooculograpic (EOG) signals, voice-

recognition control, tendon activated pneumatic (TAP), and ultrasonic sensing.    

2.1 Electromyography (EMG) Control  
 

Electromyography (EMG) is a technique used in the medical industry, in which 

an electrode is inserted into the body to record and evaluate physiological properties of 

muscles while in motion and at rest. It is often used by neurologists to detect the 

electrical potential generated by the muscle cells in order to determine if certain 

pathologies exists.  The electric potential of muscles was first documented by Francesco 

Redi in the late 1600’s using an electric ray fish, and has evolved to be used in many 

clinical and biomedical applications [33].  

Surface EMG signals have been used to non-invasively detect user intention to 

control bio-robots such as prosthetics [2, 32].  The surface EMG sensors are non-

invasively placed on suitable muscle sites on top of the skin. These sensors can detect the 

onset of a voluntary muscle contraction in order to control a wearable robot. In order to 

use this control method, the EMG signals need to be acquired from suitable muscle sites, 

the signal needs to be pre-processed, dimensionally reduced and feature extracted. 

Finally, the pattern for motion intention must be recognized in order to implement a 
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prosthetic robot [34]. Successfully using the EMG signal for prosthetic hand control will 

depend on the level of amputation or disability, signal strength and the fatigue level of the 

muscle (because the EMG signal changes with fatigue) [35].   

Current commercially available hand prosthetics use EMG signals to provide very 

few practical degrees-of-freedom (DOF), mainly from the flexion and extension of the 

upper arm muscles to open and close the robotic hand [2]. Extensive signal processing 

efforts are currently researched to gain extra information from the EMG signal to 

improve the DOF using time-frequency domains, wavelet analysis, neural network and 

fuzzy classification [15-18, 34-36]. The resulting DOF are still inadequate to fully control 

a prosthetic; however they are commercially acceptable and have dominated the market. 

Considered the most advanced commercial prosthetic hand, the iLIMBTM hand has 

individually powered digits, built in detection for sufficient grip and locks into place until 

the open signal is triggered [2]. Due to the EMG signal limitations, the user must 

manually position the thumb in two different positions in order to change between the 

key and pinch grips. Other EMG-controlled hand prosthesis is the OttoBock Sensor 

HandTM [37], FluidHand TM [38] and the Southampton Hand TM [39]. Although these hands 

mainly differ by weight, materials, speed, and touch sensors, they are still limited by low 

DOF based upon detecting the EMG signal from the user.  

EMG prosthetic control technology has been extended into rehabilitative and 

assistive exoskeletons. In particular, even though several EMG lower extremity 

exoskeleton designs have been successively launched, hand exoskeletons still remain 

quite bulky. The same underlying issues still exist with hand exoskeletons because the 

EMG signal is usually taken from the extrinsic muscles which are responsible for many 

different hand configurations. Due to the low DOF available with EMG control, many 

designs involve developing hybrid systems in order to gain more information about user 

intention [40-41]. The EMG controlled exoskeletons which are used for rehabilitation do 

not have the same design constraints as assistive systems. Because of this, rehabilitative 

systems can be bulkier in size and can have more suitable EMG sites on the limb [17, 

25].  
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2.2 Electroencephalography (EEG) and Magnetoencephalography 
(MEG) Control 

 

Electroencephalography (EEG) is a non-invasive technique to measure the 

electrical activity produced by the brain and is often used by neurologists in behavioural 

and seizure testing. In a typical surface EEG, electrodes are placed on the scalp with a 

conductive gel and the consequential signal is digitized and filtered. The resulting wave 

can reveal any abnormalities in brain function, and is thus a useful tool for clinicians. 

EEG technology is also used in creating brain-computer interfaces (BCI) to be used in 

biomedical fields and gaming industries [42-48]. Perhaps the most interesting of EEG 

devices are those being developed at Duke University Medical Center by Miguel 

Nicolelis and other collaborators. Using electrodes implanted on a monkeys brain, the 

monkey successfully controlled an exoskeleton arm to reach for food by the monkeys 

own thoughts. Later, the monkey was able to control a robot to mimic its motions on a 

treadmill with its own brain. Although this technique is invasive, it is an impressive 

demonstration of wearable robot technology [43].  Conceivably even more inspiring is the 

bio-robot being developed at the University of Reading. It is solely controlled by a 

biological brain made from cultured brain neurons from a rat. These 50,000 to 100,000 

active cultured rat neurons are placed onto a multi electrode array (MEA) with about 60 

electrodes which pick up the generated signals from the cells. When the robot nears an 

object, these signals are directed by electrodes to stimulate the brain. The responded brain 

output is then used to drive the wheels of the robot or steer left and right to avoid hitting 

the object. The next step is to determine if the brain can learn and remember [48]. 

Magnetoencephalography (MEG) signals are often used in conjunction with EEG 

signals to complete a more accurate data set to be used as control for the brain-machine 

interface (BMI). MEG is an imaging technique used by clinicians and researchers to 

measure the magnetic fields produced by electrical activity in the brain. The main 

difference in quality between EEG and MEG signals is that magnetic fields are less 

distorted by the resistive properties of the skull and cap [49]. One study compared 

simultaneous EEG and MEG recordings of hand motions, and decoded the signals with a 

67% success rate [50]. Although these results are promising, the accuracy of the decoded 
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signal is not coherent enough to fully control a wearable robot. In addition, MEG or EEG 

systems are expensive and require long training periods for accurate system calibration 

and repeatable results.  

2.3 Myokinemetric (MK) Control 
 

The use of myokinemetric signals (MK) was first documented in 1999 as a 

solution to the limitations of using EMG signals to solely control a wearable robot 

[51,52]. Myokinemetric signals are derived from measurements in the dimensional 

changes in the muscle normal to the skin during contractions. This signal is measured 

using a socket-located Hall Effect based transducer. With errors of about 10%, amputee 

subjects were able to follow a series of trajectories, hence showing promise in potentially 

controlling a fully functional prosthetic. Recent contributions have started to compare 

EMG and MK signals for degree of control, and the results are still pending [52]. 

Currently, there is no published research in MK exoskeleton control which may merit 

further investigation; however, there is still questionable information on whether multi-

functional control is even possible with MK signals.  

2.4 Mechanomyography (MMG) Control 
 

Mechanomyography (MMG) is the study of the sound that is generated by the 

muscles during contraction which represent muscle dimensional changes. It is widely 

researched for kinesiology purposes in determining muscle fatigue and muscle responses 

[53-55]. MMG control is limited in wearable robotic technology because it is very 

sensitive to external factors like muscle temperature, outside noise, skin fold thickness 

and sensor attachment [56-59]. Even with these problems, a MMG-based prosthesis was 

successfully controlled with 2 DOF, which shows significant insight to other control 

methods not currently used in the commercial market [56]. 

2.5 Electrooculograpic (EOG) Control 
 

Electrooculograpic (EOG) is the electrical signal produced by the potential 

difference between the highly electrically-active retina and cornea of the eye [60]. EOG 
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technology has been used to control a prosthetic eye to mimic the movements of an 

existing healthy eye, and in prosthesis control for patients with serious spinal injuries [61-

62]. Because devastating spinal injuries leaves few voluntary actions available, EOG 

signals from eye gaze direction were measured and used as bio-control to move a robot 

arm [62].  This non-verbal control method shows promise in severely injured or disabled 

people to control prosthetic limbs and equipment in order to participate in daily tasks.   

2.6 Voice-Recognition Control   

Usually used for high-level spinal injured patients, voice-controlled prosthesis and 

rehabilitation equipment have shown to improve the quality of life and independence of 

those affected.  Prosthetics, exoskeletons and wheelchairs have shown to be controlled by 

80 words or more, and are proven successful in operating difficult tasks like writing and 

controlling orientation [63-65].  Voice control has also been used in toy robots [66-67], 

communication controls in cars [26], as well as surgical equipment control [68].  The 

main issue with voice activation systems is non-recognition because of similar sounding 

words. Sometimes other languages are adopted for more sophisticated control, or a 

smaller vocabulary is used [63]. 

2.7 Tendon Activated Pneumatic (TAP) Control  
 

First documented in 1999, Tendon Activated Pneumatic (TAP) control sensors are 

pneumatic sensors that are placed in the socket of a prosthetic arm to detect residual 

tendon motion for multi-digit control [69].  The sliding motion of the residual tendon 

causes soft tissue displacement between the skin and the socket, and the measured 

resulting pressure differential was used to demonstrate binary or proportional prosthetic 

control.  TAP sensors were noted to fail if the tissues were too fatty or damaged and are 

limited to residual tendon function. Over the last decade, few updates were available 

from using TAP sensors, and have yet to be fully implemented in an exoskeleton or fully 

functional prosthetic device [70].   
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2.8 Mechanical Sensor Control 
 

Mechanical sensing is often used in conjunction with other user detection control 

sensors to complete the desired task for the wearable robotic device. The all-important 

human-robot interface uses these sensors in order to drive an action, provide feedback 

and can monitor the status of the device. Knowing the angular and linear joint 

displacements, velocities, accelerations, forces, torques and pressures are fundamental 

requirements in properly controlling a wearable robot. These sensors can include 

encoders, magnetic sensors, potentiometers, electrogoniometers, MEMS inertial sensors, 

accelerometers, gyroscope, piezoelectric sensors & polymers, capacitive force sensors, 

strain gauges and pressure gauges [2, 17, 71-74]. Although these sensors have useful 

properties, they should not be used to solely detect user intention to control an assistive 

exoskeleton. For example, these sensors can detect when a joint is starting to rotate 

through an angle which can be interpreted as user intention, since the targeted market for 

this device has this ability.  However if there was resistance detected by a shape, bend, 

touch or force sensor, there would be no way to confidently determine whether the person 

just had stiff joints while the exoskeleton was in motion, if the person wanted to stop the 

exoskeleton motion, or if the persons fingers touched the object with sufficient grip to 

stop the motion. Not being able to uniquely determine the difference between these 

actions can be dangerous, hence a conjunction of mechanical and bio-sensors should be 

used for ultimate exoskeleton control.  

2.9 Ultrasonic Control 
 

Ultrasonography is a non-invasive imaging technique used in the medical industry 

in which high sound frequency is transmitted through the body and is then reflected off of 

tissue boundaries. This is a safer imaging technique than X-ray or CT (computed 

tomography) scans because it does not use ionizing radiation; it uses high-frequency 

sound, which has little effect on the body. Some literature reports side effects such as 

local heating, a tendency to have left handed offspring, as well as an ill effect on the 

brains of mice when exposed to long, high frequency ultrasound. Inconclusive evidence 

of brain malformation has been reported for humans [75-79].  
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A typical ultrasound set up includes a computer connected to a transducer probe 

which emits high frequency (1-20 MHz) sound waves into the body. These sound waves 

travel until they hit a boundary between tissues, where some of the waves reflect back to 

the probe, while the rest continue on until another boundary is encountered. The reflected 

waves that are detected by the probe are relayed to the computer, where the probe-

boundary distance is calculated in order to display the image or perform other user 

specified applications.   

The transducer probe works by using the piezoelectric effect, which was first 

discovered by the Curies in 1880. When an electric current is applied to piezoelectric 

crystals, they rapidly change shape and vibrate. These vibrations produce sound waves 

that travel outwards. These crystals also emit electric currents when a sound wave hits 

them, so they can be used to send waves and detect incoming waves.   

 Ultrasound devices contain many different modes for imaging and software 

settings for different applications. Early sonography started with the 1-D (1-Dimensional) 

A-scan, and progressed to include the 2-D B-Scan, 3-D imaging and Doppler imaging. 

The use of ultrasound for medical diagnostic purposes has been used since the early 

1950’s. Regarded as an early pioneer in ultrasonography, Dr. John Wild developed a 

prototype one dimensional (A-mode) ultrasound device and successfully imaged the 

colon. He subsequently expanded to 2-D (B-mode) ultrasound imaging and published 

many papers on imaging brain tumours and living tissue structures.  Ultrasound imaging 

was later extended to include Doppler imaging in the 1970s and 1980s and 3-D imaging 

towards the 1990s. With recent developments in software and computing power, 

biomedical ultrasonography is the more popular, least invasive and economical choice for 

most diagnosticians. Medical ultrasound technology is usually used in general imaging, 

blood flow measurements, strain measurements, needle guided anaesthesia, stabilizing 

the moving ultrasound machine by means of a manipulator, kinesiology, and surgery [80-

84]. 

2.9.1 A-Scan Ultrasound 

In the original 1-D scanner, the A-Scan plots the amplitude of the reflection on 

the y axis against time on the x axis as the wave is reflected through the tissue boundaries 
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(Figure 5). This type of ultrasound is obsolete, as it can be inaccurate and 

computationally time consuming. This is because the probe has to be located in the 

proper area of interest, which may not be obvious from the body surface. If the imaged 

object is moving, Doppler shifts of these lines would have to be computed, which often 

uses inefficient methods like cross correlation to track the line shift [41].  A-Scan 

ultrasonography has shown uses in ophthalmology, where the absence or deformation of 

a peak may represent a certain eye ailment [85].    

2.9.2 B-Scan Ultrasound 

The 2-D B-Scan is the most common type of ultrasound.  The machine displays 

the probe-boundary calculated distances and intensities of the echoes as a 2-dimensional 

greyscale pie-shaped image on the screen (Figures 6, 7 A and B). B-Scan images are 

taken and displayed in real-time, and are often saved in video format for later retrieval. 

Recently, researchers have developed 3-D ultrasound imaging which uses a rotating 

probe, 2-D B-scans and special software to combine images. The images are quite 

remarkable, and can better detect smaller features (Figure 8).   

 

 

  
Figure 5: A-Scan of the eye [85]. Figure 6: B-Scan image of the vascular 

system [86]. 
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(A)             (B) 
Figure 7: (A) Comparison image taken with a 13 MHz linear array probe for the flexor 
(FDS and FDP) tendons in the wrist, and (B) the FDS tendon and hand muscle [87]. 

 

 
Figure 8: 3D Ultrasound imaging [88]. 

 

2.9.3 Doppler Functions 

Most ultrasound systems that can display a B-Scan image usually have Doppler 

imaging to determine the presence or absence of flow, velocities and displacements. 

When ultrasound waves are reflected from a moving surface, the frequency is shifted 

revealing information on the velocity of the moving object. This “Doppler Effect” is 

successfully used for calculating blood flow and other tissue motion [89-97]. Common 

Doppler functions on a clinical ultrasound machine include Continuous Wave Doppler 

(CW), Pulsed Wave Doppler (PW) and Duplex Doppler imaging.   
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Continuous Wave Doppler (CW) devices continuously emit and receive ultrasonic 

signals using a double element transducer (Figure 9). These instruments do not have 

range discrimination and any movement in the sensitive regions contribute to the Doppler 

shift. Thus, blood motion from a vessel as well as tissue motion is displayed 

simultaneously. These machines are generally less expensive than other Doppler devices, 

and are typically used to detect the presence of a fetal heart beat or other motion 

occurrences.  

Unlike a CW instrument, Pulsed Wave (PW) Doppler devices transmit pulses of 

ultrasound and then switch to receive mode (Figure 10). The received signal is gated, so 

only relevant information at the desired depth is used. A PW output plot usually shows 

velocity (or Doppler frequency) of the sampled region as a function of time.  From this 

spectral plot, the mean velocity, peak velocity, displacements and envelope curve can be 

displayed depending on the software.  

 
Figure 9: Continuous Wave Instrument [98]. 
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Figure 10: Pulsed Wave Instrument [98]. 

 
 

2.9.4 Duplex Imaging 

  In order to successfully locate the region of interest and sample volume, Duplex 

Doppler imaging is used (Figure 11). A duplex system combines real time B-Scan images 

with Doppler capabilities by superimposing a scan line and gate on the image.  This will 

ensure proper sample volume detection and accurate velocimetric quantifications.  

 
Figure 11: Duplex Imaging with the B-Scan above and PW Doppler plot below [86]. 

 
Obtaining quality B-Scan images are important in order to accurately determine 

where to measure the velocity for the PW Doppler function. In order to optimize a B-

Scan image and PW Doppler spectra data, several constraints are investigated. For B-
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Scan images frequency, gain, dynamic range, depth, focus position, and focus number 

along with different presets are explored; while gate, angle correction, pulse repetition 

frequencies, aliasing and wall filter are considered for PW Doppler spectra. These 

parameters are defined as the following: 

Frequency:  Trades penetration depth for sensitivity and resolution;  i.e., the higher the 

frequency, the shallower the depth that can be successfully imaged. 

Gain: Increases or decreases the amount of echo in the image by brightening or 

darkening the image. 

Dynamic Range (DR): Controls how the echo intensities are converted to shades of 

grey. 

Focus position, #: Allows user to move the focus zones to better focus the image. 

Gate, Angle Correct Line, and Vector Line: Referring to Figure 12, a vector line, gate 

and angle correction line are superimposed on the B-Scan image. The vector line starts at 

the probe and moves out radially. The cursor moves the gate and angle correction around 

the image. The gate is used to select a sample volume in which only the velocities of the 

moving tissues which lie between the gate lines is displayed. For the case of hand 

tendons, this is made as small as possible (1 mm) using the ultrasound machine’s 

software. The angle correct line is the angled line intersecting the vector line and 

projecting through the gate. This line should be pointed in the direction of tendon flow, 

so that it accurately measures velocities flowing at that specific angle. However, because 

only velocity components moving towards the probe or away from the probe can be 

measured, the angle correct line must not be around 90 degrees.  

 
 
 
                                                                               Gate 
                                                                                 ↓ 
                                                                                   ↑ Angle Correct Line 
 
 
 
                                                                                          ← Vector Line 
 
 

Figure 12: Screen shot showing the gate, angle correction and vector line. 
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Pulse Repetition Frequency (PRF): Adjusts the velocity scale to allow for faster or 

slower moving tissue. 

Aliasing: The maximum Doppler frequency, fD, that can be measured is half of the 

sampling or pulse repetition frequency (PRF). If the v(cosθ) term in the Doppler 

frequency formula (Equation (13) from Chapter 4) gives a Doppler shift frequency, fD , 

value greater than half of the PRF, ambiguity occurs. This effect can also be seen in 

western movies where the wagon wheel appears to move backwards due to the low frame 

rate of the film.  

Wall Filter: Removes the noise caused by vessel or heart wall motion at the expense of 

low flow velocity. 

2.9.5 Sensing User-Intention with Ultrasound 

Because ultrasonography can image moving tissue in real time, it also has the 

potential to be used for controlling an upper limb prosthetic device.  This concept is 

demonstrated in the literature by using an ultrasound system to detect the thickening of a 

forearm muscle when the wrist extends and flexes in normal subjects, and when the 

forearm muscle is flexed in amputees [40].  In this case, the forearm muscles motion was 

taken with a B-Scan ultrasound, and the data was later analyzed. A tracking and matching 

algorithm had to be employed offline in order to track the muscle changes from each B-

Scan image frame. Although this technique was not in real time, it resulted in correlating 

the muscle tissue deformation as a function of the wrist angle.  A simpler approach was 

later employed, using a hybrid system consisting of a 1-D A-Scan ultrasound sensor and 

an EMG device [41]. The hybrid system was supposed to be a more economical 

approach; however a B-Scan ultrasound system had to be initially employed in order to 

locate the proper forearm muscle before positioning the A-Scan transducer.  Also, 

skeletal muscles work as a group to perform certain motions, and only one muscle was 

investigated in this study.  Thus, it may be difficult to extend this sensing idea to control 

a multi-functional device. EMG and 1-D ultrasound sensor position are also reported to 

be difficult to place when the muscles investigated were small. Although several issues 

were noted, both experiments showed a correlation between muscle deformation and 
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wrist contraction angle, which showed promise in sensing user intention for eventual 

prosthetic control.  

2.10 Comparison of Intention Recognition Methods   
 

Over the years, electromyographic (EMG) devices have become the best solution 

for non-invasive control. However, despite all of these efforts, EMG prosthetics and 

exoskeletons are limited by many processing and usability difficulties. Many researchers 

have reported complications with detecting the onset of movement correctly as well as 

processing issues to avoid signal cross-talk [34]. There are also many limitations with the 

overall usability of the robot because of the high level of training required. This usually 

results with low productivity, low degrees of freedom and user fatigue. Commercially 

available devices recognize these issues and have explored EMG hybrid systems in 

attempts to extract additional degrees of freedom for more sophisticated devices. Because 

of the noted issues, using EMG sensors for our purposes of controlling an assistive 

exoskeleton would not be an appropriate solution.  

Using a brain controlled neuroprosthesis is perhaps the most sophisticated 

solution to restorative treatment. These devices are controlled by sensing the user’s 

electric (EEG) and magnetic (MEG) brain activity to recognize intention. Overall, EEG 

signals are presently not an effective solution for prosthetic and exoskeleton control. This 

is because non-invasive techniques require long training periods and provide relatively 

low information and invasive methods are still in its research infancy. Invasive EEG 

measurements are not a suitable control solution because the targeted users in our 

research are otherwise fairly mobile and wouldn’t likely undergo such extreme necessary 

surgery. EEG, MEG, EOG and voice activation control systems would be most suited for 

severely handicapped patients, who require these techniques to gain independence and 

mobility. 

Other intention recognition sensors like MMG, MK and TAP control are 

innovative sensing methods, but they do not show significant merit in multi-functional 

control. This is because the published results are either too inaccurate or only suited for 

certain amputees or situations. Also, mechanical sensors are usually included for a hybrid 

system and it would not suffice to use them alone to sense user intention. 
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As demonstrated in [40] and [41], ultrasound signals can be used to detect muscle 

thickening which showed promise in detecting user intention. It would be inadequate to 

measure muscle deformation to control an exoskeleton because the same extrinsic 

muscles are used for different hand motions. The resultant exoskeleton would need 

multiple sensors on several different extrinsic and intrinsic muscle sites in order to 

interpret user intention for uniquely defined hand motions. This design would not be low-

profile or computationally efficient because all of the ultrasonic information would have 

to be combined in real time to implement an exoskeleton.  Also, the extrinsic muscles 

which produce individual finger movements are not functionally subdivided [99].  That 

is, the extrinsic muscles in the forearm are not separated into parts which define 

individual finger motions. This would ultimately lead to a low degree of freedom device 

because of the lack of available sensing information. This problem resembles the same 

fundamental limitation that EMG controlled prosthetics and exoskeletons have.  

 

2.11     A New Approach to Assistive Hand Exoskeleton Control  
 

Doppler ultrasonic sensing has never been presented in the literature to potentially 

control an assistive exoskeleton. In this thesis, an improved real-time approach to 

Doppler ultrasonic sensing is developed for intention recognition to ultimately control a 

multi-functional hand assistive exoskeleton. Our requirements for a novel exoskeleton 

design include real-time sensing of tendon motion from small user intended motions of 

the disabled and weak fingers. These tendons, which are used for flexion in the fingers, 

have a maximum displacement in the longitudinal direction during finger joint motion 

[100]. These flexor tendons are also attached to individual joints in the hand. Due to this, 

ultrasonic measurements of these flexor tendons can be used for real-time sensing of user 

intention in uniquely defined hand motions. These tendons are located in the same 

geographic area, which will make multiple sensing easier. The original idea presented in 

this thesis uses B-Scan and Pulsed-Wave (PW) Doppler ultrasound. This is because PW 

Doppler can focus on a small desired area of the B-Scan and output the velocity of this 

area in real time. Once the velocity of the active tendons is above a certain threshold, the 

exoskeleton motion can be implemented.  
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Previous ultrasonic prosthetic control studies have used B and A-Scan ultrasound 

imaging coupled with lengthy offline image tracking analysis techniques to reveal a 

correlation between muscle deformation and wrist angle [40, 41].  These studies did not 

actually test this method on a prosthetic device. Also, ultrasonic imaging of the flexor 

tendons has been discussed intensely in carpal tunnel disorder and hand surgery research. 

Many of these research groups also write flow tracking algorithms which track how an 

object on a B-Scan ultrasound image moves between frames. However, some of their 

approaches do not have the ability to locate and track an object in real time, have a low 

tracking success rate or require initial tracking intervention from a user [101-105]. A-

Scan measurements have shown to be able to track motion by looking at the peak shifts; 

however, for a tendon moving perpendicular to the image plane, no motion would be 

detected. Also, it could be difficult to accurately determine which peak corresponds to 

which moving areas on A-Scan images.  

In order to present the new Doppler sensing protocol in this thesis, the following 

chapters explore the hand’s physical and functional anatomy, describe the properties of 

ultrasound and PW Doppler processing, and finally demonstrating the feasibility of this 

approach by performing three experiments. 
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Chapter 3 
 
The Anatomical and Functional Structure of the Hand 

 
In order to successfully create an assistive hand exoskeleton, the designer must 

fully understand the capabilities of the patient. Knowing the hand anatomical structure 

and possible joint articulations, along with the types of grips and grasps which can be 

restored, allows the designer to create an assistive device which maximizes the ability of 

the patient. 

3.1 Physical Anatomy 
 

3.1.1 Bones and Joints: 

  The normal human hand contains 27 bones, having 14 of them in the phalanges of 

the fingers [106]. There are 8 carpal bones in the wrist, 5 metacarpal bones in the main 

body of the hand, and 14 bones in the phalanges of the fingers and thumb (Figure 13). 

The fingers have three phalanges (proximal, intermediate and distal phalanges), while the 

thumb has two (proximal and distal) phalanges. There are also small Sesamoid bones that 

are usually found near the bases of the metacarpal bones in the phalanges or in the wrist 

which provide extra tendon leverage to reduce pressure on the underlying tissue.  

There are four joints in each of the fingers: CMC (carpometacarpal), MCP 

(metacarpophalangeal), PIP (proximal interphalangeal) and DIP (distal interphalangeal) 

joints. The thumb has the CMC, MCP and the IP (interphalangeal) joints.  The CMC 

joints lie between the carpals and metacarpal bones, the MCP joints lie between the 

metacarpals and the phalanges, and the IP joints (proximal, intermediate and distal) lie 

between the phalanges (respectively).  The CMC joint in the thumb is considered a saddle 

joint with 2 degrees-of-freedom (DOF), the MCP joints in the fingers and thumb are 

considered condyloid and ‘hinge-like” joints (respectively) each with 2 DOF, and the IP 

joints of the fingers and thumb are hinge joints with 1 DOF [107].    
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  Although there are some variations on the anatomy, like additional fingers or 

metacarpal bones, the typical average length of an adult male hand is 189 mm with a 

breadth of 84 mm, while the average length for the adult female hand is 172 mm with a 

breadth of 74 mm [108]. Other measurements are available in Table 1. 

 
Figure 13: The bones and joints in the human hand. Adopted from [109]. 
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Table 1: Phalange lengths as a percent of hand length for males and females [106]. 

Phalanx Proximal Medial Distal 

Thumb 17.1 - 12.1 

Index 21.8 14.1 8.6 

Middle 24.5 15.8 9.8 

Ring 22.2 15.3 9.7 

Little 17.7 10.8 8.6 

 

3.1.2 Muscles & Tendons: 

Skeletal muscles move bones by attaching to either side of a joint in order to 

actively contract and shorten. A second set of muscles is required to return the limb to its 

original position, because the reverse action is not possible with soft tissues. Therefore 

some muscles called agonists act as primary movers while others, usually on the other 

side of the joint, act as antagonists counteracting and opposing the motion. Because of 

this, typically one set of muscles is active while the opposite set is relaxed [106]. The 

muscles which produce finger motion are divided into intrinsic and extrinsic groups 

depending on their origin. The smaller intrinsic muscles originate in the hand, and 

provide precise coordination for the fingers (Table 2). These muscles are classified into 

three groups: thenar, hypothenar and midpalmer muscle groups. The thenar muscles 

include the abductor pollicis brevis, opponeus pollicis, flexor pollicis brevis and adductor 

pollicis. The hypothenar group refers to the palmarus brevis and the abductor, flexor and 

opponeus digiti minimi muscles. The midpalmer group consists of the lumbricals as well 

as the dorsal and palmer interossei. 
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Table 2: Intrinsic muscles of the hand [106]. 

Group Name Nerve Function 

Thenar Muscles Abductor pollicis brevis Median Abducts Thumb 

 Opponens pollicis Median Pulls thumb to little finger 

 Flexor pollicis brevis Median Flexes thumb 

 Adductor pollocis Ulnar Adducts thumb 

Hypothenar muscles Palmaris brevis Ulnar Folds skin on ulnar side of palm 

 Abductor digiti minimi Ulnar Abducts little finger 

 Flexor digiti minimi Ulnar Flexes little finger 

 Opponens digiti minimi Ulnar Pulls little finger toward thumb 

Midpalmar muscles Lumbriclas Median, Ulnar Flex proximal phalange 

 Dorsal interossei Ulnar Abduct fingers 

 Palmar interossei Ulnar Adduct fingers 

 

The larger extrinsic muscles originate in the forearm and mainly provide strength 

(Table 3). These muscles divide into flexor tendons on the anterior (palm) side of the 

forearm and extensor tendons on the posterior side of the forearm. The flexor tendons of 

the fingers include the flexor digitorum superficialis (FDS) and the flexor digitorum 

profundus (FDP), which attach to the base of the intermediate and distal phalanx, 

respectively (Figure 14-16). The flexor tendons of the thumb are the flexor pollicis brevis 

and longus which attach at the base of the proximal and distal phalanges, respectively. 

The extensor tendons of the fingers include the extensor digitorum tendon which attaches 

to the base of both the intermediate and distal phalanges of the fingers and the extensor 

indicis which attaches to the extensor digitorum of the index finger. The extensor 

digitorum tendons are also connected to each other by bands on the middle and ring 

fingers. The extensor pollicis brevis and longus attach to the thumb at the base of the 

proximal and distal phalanges, respectively. Tendons, like ligaments and cartilage, are 

part of the connective tissue group which transmit forces and provides structural integrity 

to the musculoskeletal system. Tendons are primarily composed of parallel bundles of 

collagen fibres, with non-linear stiffness characteristics and with a modulus of elasticity 

of 0.94 GPa [110].   
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Table 3: Extrinsic muscles [106]. 

Group Name Nerve Function 

Anterior, Superficial Flexor carpi radialis Median Flexes and adducts hand 

                    Palmaris longus Median Flexes hand 

            Flexor carpi ulnaris Ulnar Flexes and adducts hand 

                Middle Flexor digitorum 

superficialis 

Median Flexes phalanges and hand 

                Deep Flexor digitorum 

profundus 

Median, ulnar Flexes phalanges and hand 

Posterior,Superficial Extensor carpi radialis 

longus 

Radial Extends and abducts hand 

 Extensor carpi radialis 

brevis 

Radial Extends hand 

               Extensor digitorum Radial Extends little finger 

 Extensor digiti minimi Radial Extends little finger 

 Extensor carpi ulnaris Radial Extends and adducts hand 

                Deep Abductor pollicis 

longus 

Radial Abducts thumb and hand 

 Extensor pollicis brevis Radial Extends thumb 

 Extensor pollicis longus Radial Extends thumb 

 Extensor indicis Radial Extends index finger 

 
 
 
 
 
 
 
 
 
  

 
 
 

 
 
Figure 14: (A) The FDP flexor tendons in the palmar side of the hand attach to the distal 
phalanx (1) [109], and (B) the FDS flexor tendon splits at the PIP joint in the finger to allow 
the deeper FDP tendon through [106]. 

  (1) 

  (A)  (B)
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Figure 15: The red outline on the palmar side of the finger indicates where the Interossei 
and the flexor tendons attach [109]. 

 
Figure 16: The cross section of the hand at the wrist level, with the palm side up. The FDS 
tendon is shown above the FDP tendon [109].  
 

3.2 Functional Anatomy 

3.2.1 Joint Articulations 

Knowing the abilities and limitations of joints, muscles and tendons in a healthy 

hand is important to determine an optimal design to restore some of the motor abilities in 

disabled patients.  In order to perform the grips and grasps of daily tasks, the hand joints 

must be able to have flexion/extension, abduction/adduction, circumduction and 

opposition depending on the motion involved.  

Flexion is defined as the movement of a joint that results in a decrease of the 

angle between two bones at the joint, while extension refers to the increase of the angle at 

Interossei

FDS Tendon FDP Tendon
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the joint (Figure 17 A, C, E). Adduction is a movement of the joints which brings the 

fingers closer to the sagittal plane (midline of the arm and hand), and abduction is the 

opposite motion of moving away from the sagittal plane (Figure 17 B, D). Circumduction 

is defined as the movement pattern which moves the limb in a circular pattern using a 

combination of flexion/extension and abduction/adduction (Figure 17 G). Opposition 

motions refer to the combinations of flexion and abduction and axial rotation of the 

joints. One of the most remarkable motions of the human hand, opposition of the thumb 

sets humans apart from many animals by opposing (or turning back) against the other 

four fingers which allows for refined grip (Figure 17 F). 

Referring to Figure 13, the MCP, PIP and DIP joint articulations form the basis 

for finger motion while the CMC, MCP and IP joints allow for motion of the thumb. 

Even though the CMC joints in the fingers are stabilized by the interosseous ligament to 

form a relatively immobile joint, its main function is to allow the hand to conform to 

objects being handled [106]. The CMC joint in the thumb however permits 

flexion/extension in the plane of the palm of the hand, abduction/adduction in a plane at 

right angles to the palm, circumduction, and opposition.  The MCP joints in the fingers 

and thumb allows for flexion/extension, abduction/adduction (when not flexed) and 

circumduction motions. The interphalangeal joints only permit flexion and extension in 

the finger and thumb. The intrinsic muscles and tendons involved with flexion, extension, 

abduction, adduction of the fingers and thumb are summarized in Table 4 and shown in 

Figure 17 A-G. 

  Many researchers have categorized the hands functional position when 

manipulating objects. These classifications are not universally standardized, but 

convenient names are often adopted. The main grips and grasps are shown in Figure 17 

H-K. One of the unique characteristics of human hands is their ability to conform around 

many different objects. Although several other variations of these grips exist, the index 

pinch, key grasp, hook and power grips may adequately describe hand prehension 

patterns. It is hard to quantify how often these configurations are used throughout the 

day, although some papers suggest various percentages for the average human [111]. 

Overall, disabled persons wish to restore quality to their lives by having the ability to 

feed, clean and dress themselves. All of these tasks can usually be completed by the 
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index pinch, key grasp, hook and power grips. 

 

Table 4: The intrinsic muscles and tendons involved with flexion, extension, abduction, 
adduction of the fingers and thumb. 

Motion Phalanx Joint Muscle 

flexion all fingers MCP Lumbricals/Flexors 

  “ dorsal interossei 

  “ palmer interossei 

 little finger “ digiti minimi brevis 

 thumb “ flexor pollicis brevis 

 all fingers PIP 
flexor digitorum 

superficialis 

 all fingers DIP 
flexor digitorum 

profundus 

 thumb IP flexor pollicis longus 

extension all fingers all joints extensor digitorum 

 “ “ extensor carpi ulnaris 

 index “ extensor indicis 

 little finger “ extensor digiti minimi 

 all fingers DIP/PIP lumbricals 

 “ “ dorsal interossei 

 “ “ palmer interossei 

 thumb MCP extensor pollicis brevis 

 “ IP extensor pollicis longus 

adduction fingers MCP palmer interossei 

 thumb “ adductor pollicis 

abduction fingers “ abductor digiti minimi 

 “ “ dorsal interossei 

 thumb CMC/MCP abductor pollicis longus 

 “ CMC/MCP abductor pollicis brevis 
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(A) Flexion (towards thumb) and extension 
(away from thumb) of the MCP, PIP and 
DIP joint of the index finger. 
 

(B) MCP finger adduction (towards each 
other) and abduction (away from each 
other). 

  
(C) Thumb CMC joint flexion (towards the 
index finger) and extension (away from the 
index finger). 

(D) Thumb CMC joint adduction (towards 
the index finger) and abduction (away from 
the index finger).  

 
Figure 17 (A)-(K): Joint articulations and grip configurations of the hand. 
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(E)  Thumb MCP, PIP and DIP flexion 
(towards the palm) and extension (away 
from the palm). 

(F) Thumb opposition. The thumb is 
rotated towards the little finger. 

 
(G) Index finger MCP circumduction while keeping the PIP and DIP joint fixed. 

 

  
(H) Hook Grip (I) Pinch Grip 

Figure 17 continued. 
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(J) Power Grip (K) Key Grip 

Figure 17 continued. 
 

3.2.2    Tendon Excursion 

  When a person decides on a particular hand motion, brain signals are translated to 

the forearm muscles which in turn activate the tendons to articulate the hand joints in 

about 30-50 ms, depending on the motion.  To accomplish a hand grasp, several muscles 

work together in order to perform the desired grip, mostly to optimize the body from 

becoming too fatigued. As previously mentioned, there are typically two sets of muscles 

around a joint: one set as an active primary mover, and the other set passively opposing. 

Therefore, the active muscle set is contracting and shortening, hence moving the tendon 

more than the passive muscle. This idea can be extended to quantify the differences in 

tendon excursion under passive and active motion. Many of the results in the literature 

require this knowledge for rehabilitative research, and one groups findings show the 

mean excursions of FDS and FDP tendons in cadavers were 1 mm on passive flexion, 

respectively, as compared to 14 mm and 10 mm on active flexion, respectively [112]. 

Although this study measured tendon excursion on cadavers, as well as during and after 

operative repair, other tendon displacement studies on healthy subjects showed the same 

pattern of passive motion having a lower measurement than passive, as expected. 
Traditionally, tendon displacements (or excursions) are obtained by non-invasive 

estimations using joint rotation angles and moment arms of the fingers [90,107].  
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Generally, this technique has limitations because it assumes the tendon is without 

interconnections, free to move, and constant throughout the rotation of the finger [107]. 

In actuality, the tendons have interconnections which will alter the actual displacement of 

a tendon during rotation. Furthermore, the moment arm is not constant throughout full 

joint rotation [113]. Other invasive methods to determine tendon excursion have used X-

ray images with surgically placed metal markers [114]. These experiments are mostly 

research-based and have limited clinical applications. Other studies have used cadaver 

hand specimens in order to estimate passive tendon excursions [95,100]. Since passive 

tendon excursion is smaller than active excursion, it is difficult to determine the actual 

excursion experienced during different grip configurations using this method [112]. 
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Chapter 4 
 

The Physics of Ultrasound 

4.1 Ultrasound Propagation 
 

Sound waves are a form of mechanical energy that propagate as a pressure wave 

through a solid, liquid or gas medium. They are usually called compressional or 

longitudinal waves, and are produced by a vibrating source. During vibration, the forward 

movement of the sound source causes a pressure rise in the adjacent medium. Likewise, 

as the source moves backwards, there is a pressure drop in the medium such that the 

molecules move apart [98]. This constant push-pull action of the sound source results in 

alternating molecular compression and rarefaction in the propagating medium (Figure 

18).  

 
Figure 18: Propagation of sound [98]. 

The speed of ultrasound propagation c (m/s), in a medium such as soft tissue can be 

expressed as Equation (1) [115]: 

                                                              
2/1
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⎛
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o

kc
ρ

            (1) 

Where:   

            k is the bulk modulus, measured in N/m2, and is a measure of the   

            stiffness (hardness) of a medium, or its resistance to compression. 

ρo is the mass density, measured in (kg/m3). 



Chapter 4. The Physics of Ultrasound  

M.A.Sc. Thesis, © K. Stegman, 2009 
 

38
A propagating ultrasonic wave is subject to a progressive pressure amplitude and 

intensity decline. This is known as attenuation and is mainly caused by reflection, 

refraction, scattering, absorption and nonlinear propagation. Many of these factors are 

strongly frequency dependent, thus limiting the imaging depth with increasing frequency. 

The attenuation, a (dB), can be approximated by Equation (2) [115]: 

                                                             fLa 5.0=                                                          (2) 
Where: 

f  is the transducer frequency, measured in MHz. 

 L is the imaging depth, measured in cm. 

The attenuation coefficient, ac (dB/cm) is approximated by Equation (3) [115]: 

fac 5.0=                                                           (3) 
 

In soft tissues for example, there is approximately 0.5 dB of attenuation per cm 

for each MHz of frequency [115].  Other common attenuation coefficients, penetration 

and frequencies can be found in Table 5 for soft tissue and Table 6 for other media.  

 

Table 5:  Attenuation Coefficients and penetration depth for soft tissue [115]. 

Frequency (MHz) Attenuation Coefficient (dB/cm) Penetration (cm) 
2.0 1.0 30 
3.5 1.8 17 
5.0 2.5 12 
7.5 3.8 8 
10.0 5.0 6 
15.0 7.5 4 

 
Table 6: Attenuation Coefficients for other media [116]. 

Tissue Attenuation Coefficient (dB/cm) 
Blood 0.200 
Muscle 1.500 
Liver 0.700 

Brain (adult) 0.800 
Brain (infant) 0.300 

Bone 10.00 
Fat 0.600 

Water 0.002 
Soft Tissue (average) 0.700 

Castor Oil 1.000 
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Reflection is a type of attenuation which is quantified in terms of acoustic 

impedance differences at interfaces. The acoustic impedance of a medium, z (rayls), is a 

measure of the medium’s resistance to sound transmission. Inhomogeneties of the 

medium’s impedance form the basis of ultrasonic and Doppler imaging. This is because 

boundaries between adjacent media with different impedance values change the 

characteristics of sound transmission. As a result of these changes, sound waves undergo 

reflection and refraction at these differing interfaces.  

  Reflection is also a special case of scattering which occurs at flat and smooth 

boundaries (Figure 19 A). The amplitude of this reflection, ar, is directly related to the 

magnitude of the differences in the acoustic impedances at the interface, and is given by 

Equation (4) [115]: 

                                              ⎟⎟
⎠
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⎛
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zz
zz

aa ir                                                    (4) 

Where:  

ai is the incident amplitude 

 z1, z2 are the impedances of media 1 and 2, respectively 
 

 

 

 

 

 

 

 

 

 

 

Figure 19: (A) Reflection of ultrasound at a plane boundary, and (B) reflection and 
refraction on a plane boundary (oblique angle) [116]. 
 

Table 7 demonstrates the ratio of reflected amplitude to the incident amplitude for 

various interfaces. It is useful to note that this is only an estimate because various errors 

exist in determining the speed of sound. Table 8 tabulates various media of interest in 

(A) 

(B) 
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medical ultrasonics along with their corresponding average speed c, and their acoustic 

impedance z. 

Table 7: Ratio of reflected amplitude to the incident amplitude for various interfaces [116]. 

Reflecting interface Ratio of reflected to 
incident wave amplitude 

Percentage energy 
reflected 

Fat/Muscle 0.10 1.08 
Fat/Kidney 0.08 0.64 

Muscle/Blood 0.03 0.07 
Bone/Fat 0.70 48.91 

Bone/Muscle 0.64 41.23 
Lens/Aqueous Humour 0.10 1.04 

Soft  Tissue/Water 0.05 0.230 
Soft Tissue/Air 0.9995 99.90 

Soft Tissue/ PZT Crystal 0.89 80 
Soft Tissue/ Castor Oil 0.07 0.43 

 

Table 8: Speed of sound and acoustic impedances of various media [116]. 

Material Speed (m/s) Acoustic Impedance (rayles) *106 
Air 330 0.0004 

Amniotic fluid 1510 - 
Aqueous humour 1500 1.50 

Blood 1570 1.61 
Bone 3500 7.80 
Brain 1540 1.58 

Cartilage 1660 - 
Castor Oil 1500 1.43 

CSF 1510 - 
Fat 1450 1.38 

Kidney 1560 1.62 
Lens of eye 1620 1.84 

Liver 1550 1.65 
Muscle 1580 1.70 
Perspex 2680 3.20 

Polythene 2000 1.84 
Skin 1600 - 

Soft tissue average 1540 1.63 
Tendon 1750 - 
Tooth 3600 - 

Vitreous humour 1520 1.52 
Water at 20°C 1480 1.48 
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If the wavefront strikes the media at an oblique angle, the beam also undergoes 

reflection and refraction (Figure 19 B). The angle of reflection is at an equal but opposite 

angle to the incident wave, with an amplitude given by Equation (5) [106]: 

 

                                                ⎟⎟
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12                                               (5) 

 
Where:  

ar is the amplitude of the reflected wave 

  ai is the amplitude of the incident wave 

 θi is the incident angle  

 θT  is the transmitted angle 

 

Refraction is the deviation of the wave as it crosses the boundary of differing 

media. The angle of propagation is given by Snell’s Law in Equation (6) [116]: 

 

                                                         μ
θ
θ

==
2

1

sin
sin

c
c

T

i                                                        (6) 

 
Where:  

c1, c2 are the speed of sound in media 1 and 2, respectively 
μ is the index of refraction 

 

If the boundary is not flat and smooth and the surface discontinuities are not 

smaller than a wavelength, some of the energy of the wave is scattered in many directions 

(Figure 20). These discontinuities may be changes in density or compressibility of the 

media. Scattering is a very important factor in ultrasound because it permits imaging of 

tissue boundaries not along the direction of the wave’s propagation.   

 

 
Figure 20: Scattering from a rough boundary [115]. 
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Another process that contributes to the wave’s attenuation is absorption. 

Absorption is the process in which sound is converted into heat.  Absorption also 

increases rapidly with sound frequency propagating in the tissue and is responsible for 

thermal bio-effects.  

Lastly, because the medium of interest is attenuating, nonlinear propagation also 

occurs. This is because the speed of sound is faster in higher pressure portions of the 

wave than the lower pressure portions. This affects the original smooth sinuosoid by 

changing its shape (Figure 21). This new nonsinusoid waveform propagates nonlinearly, 

and contains additional frequencies called harmonics which are even and odd multiples of 

the original frequency.   

 
Figure 21: Non-linear propagation of a sinusoidal wave as it travels from (a) to (e) [116]. 

 

 
4.2 Doppler Physics 
 

The Doppler Effect was first described by the Austrian physicist Christian 

Andreas Doppler (1803-1853) after a number of incorrect velocity measurements of 

moving stars [116]. Many industries today rely on the Doppler Effect for research. This 

includes the military, police, meteorologists, astronomers and medical professionals. 

Doppler ultrasound was first used in medicine in the late 1950’s and has steadily become 
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an indispensable tool in several clinical applications. It is an especially important tool for 

non-invasive detection of many moving structures as well as determining velocities and 

displacements within the body.  

The Doppler Effect is due to the change in the observed frequency of a wave due 

to motion of the source or receiver, away or towards each other. When the receiver 

moves towards the source, the observed frequency fr increases and is given by Equation 

(7) [117]: 

                                                      ⎟
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Where: 

 fT  is the transmitted frequency 

 v is the receiver velocity 

 

If the receiver moves at an angle θ, v is replaced by v(cos θ) as in Equation (8): 
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When the receiver is stationary and the source is moving with a velocity v, the observed 

frequency fr is calculated by Equation 9: 
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Or, if the source is moving at an angle θ, the observed frequency is given by Equation 
(10): 
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In medical ultrasound, the ultrasonic beam is backscattered by moving tissue or 

blood. The source signal is Doppler shifted by the moving receiver (blood or tissue) 

(Figure 22 A). The blood or tissue now becomes the moving source as the wave is 

bounced back to the receiver (transducer) (Figure 22 B).  The returning echo received at 

the transducer will thus use both Equation (8) and Equation (10) from above. The 

resulting observed frequency is given by Equation (11): 
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Now, the Doppler frequency, fD, is the received frequency subtracted from the transmitted 

frequency (fr - fT), and is given by Equation (12): 
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Because v<<c, (or v/c<<1), Equation (12) can be approximated by: 
 

                                                    ( )θcos2v
c
ff T
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Equation (13) is known as the Doppler Equation in medical ultrasound.  
 
 

 
 
Figure 22: Doppler Effect with (A) the moving receiver and (B) the moving source [117]. 
 
 



                                                                                                                                             

M.A.Sc. Thesis, © K. Stegman, 2009 
 

Chapter 5 
 

Device Components and Signal Processing for Duplex Imaging 

5.1 Basic Ultrasonic Device Components for B-Scan Imaging 
 

Sonographic instruments that are used in industrial and medical environments 

vary in design based on the required function.  However, most ultrasonic machines share 

similar general components like a transducer, beamformer, signal processor, image 

processor and display (Figure 23).  

 (A)   
Figure 23: A block diagram of a pulse echo imaging system with (A) the transducer, (B) the 
beamformer, (C) the signal processor, (D) the image processor and (E) the display [115]. 

5.1.1     The Transducer 

 Ultrasonic transducers convert sound energy into electrical energy and vice versa. 

This is achieved by small piezoelectric elements within the transducer. Piezoelectric 

materials like quartz and some ceramics change shape by vibrating rapidly when an 

electric current is applied to them. These crystal vibrations in turn produce sound waves. 

Conversely, when incident sound waves are intercepted by the crystals, electric currents 

are produced.  The most common piezoelectric material used in medical ultrasound is 

lead zirconate titanate (PZT). This is a ceramic which is manufactured to have 

piezoelectric properties by applying a strong electric field at high temperature [115]. PZT 

is sometime used with a polymer to create a composite material with improved acoustic 

(D) 

(B) 

(C) 

(A) 

(E) 
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properties. The piezo element is backed with a damping material and matching layer to 

improve resolution (Figure 24). Resolution is also improved with beam focusing.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: The internal parts to a transducer [115]. 

 

Transducers not only emit and receive echoes, but they have to send these waves 

through many paths in order to produce a cross-sectional image. This property is usually 

referred to as scanning, sweeping or steering the beam, and is performed by combining 

several piezoelectric elements on an array. These elements are rectangular (linear array) 

or curved (convex array) (Figure 25).  

 
Figure 25: (A) Frontal view of a 64 element linear array and (B) side view of a 16 element 
convex array [115]. 
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5.1.2     The Beamformer 

 The beamformer consists of a pulser, pulse delays, transmit/receive switch, 

amplifiers, analogue to digital converters, echo delays and a summer (Figure 26). 

 (F) 
(A)  

Figure 26: Beamformer schematic with (A) the pulser, (B) pulse delays, (C) transmit and 
receive switch, (D) the transducer, (E) amplifiers, (F) analog-to-digital converter, (G) echo 
delays, and (H) the summer [115]. 
 

• Pulser and Pulse Delays 

The pulser produces the electrical voltages which forms the ultrasonic beam. The 

frequency of the voltage pulse determines the frequency of the resultant ultrasonic pulse 

that travels through the patient.  This frequency ranges from 1-20 MHz and the pulse 

repetition frequency (PRF) ranges from 4 to 30 kHz for medical purposes.  

Phase delays are necessary for the complicated sequencing and phasing operations which 

are involved to control beam steering, scanning and transmission focusing.  

• Transmit/Receive Switch (T/R Switch) and Amplifiers 

The T/R switch directs the pulser’s voltage to the transducer during transmission. It also 

directs the returning voltage from the transducer to the amplifier during reception. The 

amplifiers then increase the small voltage amplitude received from the transducer.  

• ADC, Echo Delays and the Summer 

After amplification, the echo voltages pass through an analogue to digital converter 

(ADC). The resulting echoes from all signal channels are delayed to achieve proper 

focusing and steering. They are then added together in the summer to produce the final 

echo that is relayed to the signal processor. 

 (A)  (B) 

(C)  

(D) 

(E) 

(F) (G) 

(H) 
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5.1.3 Signal Processor 

The signal processor receives the digital signals from the beamformer, and then 

processes them by filtering, demodulation and compression. 

• Filter 

A bandpass filter is often employed to reduce electronic noise. Other Harmonic filtering 

can improve resolution by using 2nd harmonics produced by nonlinear propagation.  

• Demodulation 

Because the echoes are difficult to use in this form for image processing, the signals are 

demodulated. Amplitude demodulation is illustrated in Figure 27. The signal is first 

rectified by inverting half of the waveform (Figure 27 a, b). It is then smoothed by 

passing it through a low pass filter (Figure 27 c). This removes the high frequency 

oscillations and retains the slowly varying envelope. This is a useful technique in 

ultrasound signal processing because only the amplitude of each echo is needed for the 

grayscale display.  

 
Figure 27 (a-c): Demodulation process [118]. 

• Compression 

Compression is the final step in signal processing and reduces the differences between 

the minimum and maximum voltage amplitude. This transforms the echo data into a more 

usable range for display purposes.  

•  Additional Processing 

Depending on the functions desired on the ultrasound machine, additional signal 

processing may occur. This includes spectral processing to determine the velocity 

components on the image. 
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5.1.4     Image Processor  

 The signal is now digitized, filtered, demodulated and compressed. The echo data 

needs to be further processed in order to be displayed on the screen.  These processing 

steps include a scan converter, preprocessor, image memory, postprocessor and DAC 

(Figure 28). 

 
Figure 28: Image Processor [115]. 

 

The Scan Converter reformats the echo signal into an image form for further processing, 

storage and display. The image is preprocessed using edge enhancement, pixel 

interpolation and then stored in memory. Other post processing techniques determine 

how the echo data is displayed on screen. The data is then converted into a voltage using 

a digital to analogue converter (DAC), and is then relayed to a monitor where the echo 

brightness is displayed.  

5.2 Pulsed Wave Doppler Signal Processing   
 

There are several noted issues discussed in the literature about using A and B-

Scan hybrid systems for prosthesis control.  The discussed shortfall inspired the new 

approach of using PW Doppler to sense user intention for hand exoskeleton applications.  

The following discussions take a closer look at PW Doppler machines by describing the 

signal acquisition and processing steps, spectral analysis, errors and approximations. 

Using these processing techniques, a MatlabTM script is presented in Chapter 6 to show 
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how the PW Doppler signal can be acquired from a moving tendon and used for 

exoskeleton control. 

5.2.1 PW Doppler Signal Acquisition & Pre-Processing 

PW Doppler technology has been made available to clinicians since the late 

1950’s. Since this time, PW Doppler devices have become an indispensable tool in 

research and medical diagnostics.  This is mainly due to the advancement in signal 

processing and computing power. This includes increased performance of higher 

resolution and efficient systems that remain cost effective to its users.  

PW ultrasound velocimetry involves detailed analysis of the shift frequencies that 

constitute the Doppler signal. The acquisition & processing steps are outlined in Figure 

29 and discussed below. 

 

 

 
Figure 29: PW Doppler Processing [119]. 
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• Transmitter and Receiver 

The transducer transmits a train of sequential pulses to the desired sample volume in 

the body. The returning signals are received and then amplified since the returning echo 

voltages are generally weak.  

• Demodulation 

The total received signal contains the Doppler shifted frequencies and the carrier 

transmitted frequency.  Demodulation refers to the extraction of the Doppler frequencies 

from the carrier frequency.  Furthermore, flow direction away or towards the transducer 

must be distinguished. Both processes are accomplished by a phase quadrature procedure. 

This technique mixes incoming signals with the phase shifted signals from the transducer. 

These reference signals are assumed to be ¼ of a cycle out of phase (90º), hence the name 

“phase quadrature”. This technique results in the generation of the incoming signal and 

quadrature output. This discriminates direction because when the flow is towards the 

transducer, the incoming signal lags the quadrature by 90 º. Similarly, flow away from 

the transducer results in the incoming signal leading the quadrature by 90 º.  Thus 

direction discrimination can be determined by phase information.  

• Range Gate, Sample & Hold, and Filters 

Because only the echo data from the sample volume is desired, the returning signal is 

gated.  This is accomplished by extracting only the received echoes that lie within a 

particular depth in the beam (or a particular range in time).  

The sample and hold gathers all the phase shift and Doppler information from all the 

sets of pulses within the range gate. This step is necessary because there are many 

different phase shifts corresponding to the different structures in the range gate. 

Therefore, the signal is sampled and held until enough time has passed for all reflections 

within the gate to return. The resulting signal is then bandpass filtered to remove low or 

high frequency noise.  

5.2.2 PW Doppler Spectral Analysis 

The Doppler shift signal is now demodulated and filtered, and is represented by 

variations of amplitude over time (Figure 30).  
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Figure 30: Doppler signal after demodulation [98]. 

 

This signal is also in an audible output form, and is sent to the speakers, as shown 

Figure 29.  This audible stereo signal is a direct representation of the Doppler frequency 

shift and particle flow velocity.  

At the same time as the audible output, spectral processing occurs in order to 

quantify the Doppler shift velocities and to display them on a screen in real time. 

Although various methods exist, Fourier-based analysis is by far the most powerful 

mathematical tool used in spectral processing. First described in early 1800’s, this 

process breaks down a periodic waveform into its constituent frequencies with amplitude 

and phase information (Figure 31).  

 
Figure 31:  Principle of Fourier Transform analysis [98]. 
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This is accomplished by Equation (14) [120]: 
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Where:  
  t is the time 
 j = 1−  

f  is the frequency 
x(t) is the continuous signal in the time domain  
X(f) is the continuous signal in the frequency domain. 

 
For practical medical purposes, a sample of data is taken such that a discrete series of 

frequency points is used.  The discrete Fourier Transform (DFT) is given by Equation 

(15): 
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Where:  
k = 0, 1, 2, …, N-1 

 ωk is the kth frequency sample 
 

For example, if a signal with frequency components 10, 25, 50 and 100 Hz is 

occurring at all times the signal will have a Fourier transform as illustrated in Figures 32 

A and B. However, if these same frequencies exist at different times in the signal, the 

resulting DFT still shows the four frequency peaks as before (Figures 33 A, B). In this 

example however, the frequency peaks that are present in the signal do not occur at all 

times. This example demonstrates the difference between stationary and non-stationary 

signals. The DFT just shows which frequency components exist, but do not reveal at what 

times they exist. These non-stationary signals are better analyzed using the Short-Term 

Fourier Transform (STFT).  This method separates the signal into small segments in time, 

where the signal can be considered stationary. This is known as windowing. The most 

often used windows are a Hamming window, Bartlett window or a rectangular window 

(Figures 34 and 35). The windows can also be overlapped to improve resolution. 
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Figure 32: (A) 10, 25, 50 and 100 Hz occurring at all times, and (B) its corresponding 
Fourier Transform in MatlabTM. Note the four peaks in the above figure, which correspond 
to four different frequencies of 10, 25, 50 and 100 Hz exist at all times. 

 

(A) 

(B) 
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Figure 33: (A) 10, 25, 50 and 100 Hz signal in MatlabTM occurring at different times, and 
(B) The signal in (A)’s corresponding Fourier Transform in MatlabTM.  

(B) 

(A) 
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Figure 34: A 64 point Hamming Window from Matlab TM 

 

Figure 35: A 64 point Bartlett Window from Matlab TM 
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Ultrasound machines display the frequency space information in a spectrogram 

form. This is a 3-D plot representing frequency vs. time in 2-D, and power spectral 

density in the 3rd dimension. In the frequency vs. time 2-D plot, each “bin” on the plot 

represents the range of frequencies present during the small time interval (Figures 36 and 

37). The length of the “bin” sides are determined by the number of Fourier Transforms, 

the window size and the window overlap used on each small time interval.  

Figure 36: A typical frequency spectrogram obtained in Matlab TM. The Doppler 
frequencies are measured in Hz, and are displayed on the y-axis. The small time intervals 
are measured in seconds. The power spectral density is measured in dB, and is displayed on 
the z-axis as a colour-scale.  

 

 

 

 

 

Figure 37: (A) Demonstrating the frequency bins for the corresponding power spectral 
density on a frequency (or velocity) spectrogram (B). 

(A) 

(B) 
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Also, using the Doppler formula in Equation (13), the velocity can be estimated 

and plotted in place of the frequency. Thus the ultrasound display usually shows a 

greyscale (or colour-scale) map of the velocity of the sample volume as a function of 

time. Once the velocity spectrogram is determined, it is important to estimate the 

displacements of the moving structure. This is accomplished by calculating the mean 

velocity curve and performing the velocity-time-integral (VTI).  Referring to Figure 36, 

there are several frequencies (or velocities) present at each moment in time, 

corresponding to the sample volume size of the moving object. In order to find the mean 

velocity curve, the mean velocity at each small time interval is calculated. This is 

achieved by calculating an intensity-weighted mean velocity (IWMV), i.e.:      

                                                        
∑
∑

=

i
i

i
ii

p

pV
IWMV                                   (16)  

Where:  

  Vi is the estimated velocity of the ith data point, with a power spectral density of pi 

                at the time t. 

Once the IWMV is calculated for each time interval, a mean velocity curve can be fit to 

these points. Once the curve is fit, it is integrated to estimate the displacement of the 

moving structure.  

5.2.3 Errors and Approximations: 

It is important to summarize all of the problems, approximations and errors 

involved in obtaining and processing the Doppler shifted signal. Firstly, the transmitted 

signal suffers from many forms of attenuation. This limits the practical imaging depth. 

Also, when the signal is received, other errors incur because of circuitry noise and 

analogue to digital conversions.  

  When it comes to PW Doppler errors, perhaps the most prominent problem is the 

uncertainty involved with estimating the sample volume’s flow velocity. There are two 

major causes of this error. Primarily, there are resolution issues with the STFT. This 

stems from the type of window chosen, the length of this window, the number of window 
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overlaps, and the number of Fourier transforms performed.  This determines the “bin” 

length and width (or the resolution) of each small frequency and time interval on the 

spectrogram. Secondly, when these frequencies are used to determine the velocities with 

the Doppler formula, the Doppler angle must be determined.  Referring to the Doppler 

formula (Equation (13)), the greatest frequency shift occurs when the transmitted wave is 

parallel to the flow axis. If the ultrasonic wave intersects a sample at an angle, only the 

component of the flow velocity vector that is along the wave path contributes to the 

Doppler Effect. Therefore as the angle increases, the frequency shift decreases. When the 

angle reaches 90 º, the Doppler shift is virtually non-existent. This is demonstrated by 

substituting cos(90 º) into Equation (13). 

Most importantly, the Doppler angle presents a significant error if incorrectly 

determined. If the operator introduces an error ε into the cosine term, the measured 

velocity Vm is shown in Equation (17) [121]: 

                                                   
)cos(2 εθ +

=
t

d
m f

cf
V                                                      (17) 

The error in the measured velocity can be expressed in terms of a ratio between Vm and 

the actual velocity V, and is shown in Equation (18): 
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Rearranging the ratio,  
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For example, if the actual flow was at θ = 50 º and the operator introduced a 3 º error, a 

6% velocity error is introduced.  Similarly, if an error of 5 º was introduced to the actual 

angle of 80 º, a 99.2% velocity error occurs (Table 9).  It is therefore recommended to 

keep the Doppler angle between 30 º and 60 º to minimize the error [115].  
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Table 9: The cosine and speed errors when determining the Doppler angle [115]. 

 Cosine Error (%) Speed Error (%) 
True Angle 
(degrees) +2 degrees +5 degrees +2 degrees +5 degrees 

0 -0.1 -0.4 0.1 0.4 
10 -0.7 -1.9 0.7 3.0 
20 -1.3 -3.6 1.4 3.7 
30 -2.1 -5.4 2.1 5.7 
40 -3.0 -7.7 3.1 8.3 
50 -4.2 -10.8 4.4 12.1 
60 -6.1 -15.5 6.5 18.3 
70 -0.6 -24.3 10.7 32.1 
80 -19.9 -49.8 24.8 99.2 

 
Other problems that exist with PW Doppler systems include aliasing and spectral 

broadening. When aliasing occurs, there is a misrepresentation of the frequency shift, 

magnitude and direction. This phenomenon is mainly encountered with high velocity 

flow and is described by the Nyquist limit and the Theorem on Sampling. These state that 

for unambiguous results, the maximum frequency must not exceed half of the sampling 

rate (or pulse repetition frequency) [115]. Other phenomena such as spectral broadening 

describe the thickening of the frequency peak on the frequency plot (Figure 38). This can 

be due from disturbed or turbulent flow and can possibly be indicative of a pathologic 

condition. Spectral broadening can also occur artificially by excessive Doppler gain, 

beam spreading and wide aperture arrays.  

 

 
 

Figure 38: Spectral broadening [119]. 
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Error also incurs when determining the mean velocity values for displacement 

estimation. Usually, a PW Doppler spectral processor employs a lower cut-off velocity 

(or frequency) filter to remove unwanted low frequency noise or slow moving objects. 

This filter is referred to as a Wall filter and is usually used to remove the signal from the 

slow moving heart wall in order to determine the blood displacement. It is important to 

select appropriate threshold values for this filter. An incorrect threshold value would 

ultimately affect the outcome of the displacement estimation because there would be 

excessive weighting to the higher amplitude frequencies (or velocities). This is because 

the mean frequency (or velocity) at a given time is calculated using Equation (16). This 

equation weights the velocities according to the amplitude of their power spectral density. 

Using an inappropriate frequency (or velocity) cut-off would result in an inaccurate mean 

velocity curve, velocity-time integral and thus, displacement.  
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Chapter 6 
 

Proposed Techniques and Methodology  

6.1 Introduction 
 

As an alternative to other non-invasive methods, ultrasound scanners have shown 

remarkable accuracy when assessing tendon damage as well as tendon excursion [89-97]. 
Commercially available ultrasound scanners have many built-in imaging and Doppler 

functions which can reveal information about tissues, organs and flow estimations. In 

order to determine tendon excursion from ultrasonic grayscale images, tracking 

algorithms have been previously implemented [92]. These methods use block matching 

or cross-correlation techniques to scan each image in a cine-loop in order to detect and 

track the moving tendon. These processes usually require a lengthy offline analysis with a 

lower success rate due to resolution and computational issues. However, Pulsed-Wave or 

Color Doppler functions have shown improved accuracy in determining tendon 

excursions. These built-in functions of a typical off-the-shelf ultrasound scanner display 

real-time velocity spectrograms of the moving tendon and can allow for offline velocity-

time-integration (VTI) to estimate the total excursion. Furthermore, because the tendon’s 

frequency-shifted Doppler signals returning to the scanner are in the audible range, most 

ultrasound machines allow for real-time audible output of the signal to the on-board 

speakers. This audible output occurs at approximately the same time as the displayed 

velocity spectrograms.  

One of the most desirable functions on ultrasound machines for research purposes 

is a completely open-architecture system for easy data access. This means that the signal 

can be obtained at any point in the system’s processing phases so that the researchers can 

experiment with their own processing methods. These machines are quite remarkable, but 

very expensive. Some of the more affordable machines allow for a software development 

kit (SDK) that will allow for some data access. The off-the-shelf Doppler ultrasound 

scanner used in this thesis has the SDK capability, but it is non-trivial for usage by non-
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Software Engineers. Also, this machine will only allow for raw data access before any 

system processing has taken place (demodulation, filtering, etc).  

Unfortunately, most commercial Doppler ultrasound scanners do not allow for 

any raw data access in order to capture this audible signal in real-time. To address this 

issue, one research group has created acquisition software that uses an A/D converter to 

transfer the signal from the ultrasound machine to a PC for analysis [90]. However, their 

reliability study may be plagued with resolution issues from using a lower frequency 

transducer with the ultrasonic scanner. Other resolution issues in their study may be due 

to noise from the A/D converter as well as error accumulations from their choice of 

processing using zero-crossings. Although cost-effective, zero-crossing detectors have 

significant limitations when dealing with low velocities or a small sample size [116]. 

Both of these events occur when dealing with real-time tendon data acquisition and 

processing. Furthermore, the calculated tendon displacement cannot be reliably compared 

to the actual tendon displacement. This is because the actual tendon displacement is 

estimated using unreliable methods such as joint rotation angles and moment arms of the 

finger for non-invasive measurements [90]. 

Perhaps an easier method exists to acquire real-time echo data from an ultrasound 

machine that does not have data access capabilities. Referring to Figure 29, before the 

demodulated and filtered echo data is sent for spectral processing, it is relayed to the 

speakers. This audible signal is a direct representation of the Doppler shift frequencies 

(and flow velocities) and is displayed as an amplitude as a function of time (Figure 30). 

The signal can be acquired in real time by a soundcard (or other recording software), and 

then processed to find the spectral waveform. This is an efficient and inexpensive way to 

obtain the demodulated and filtered Doppler data from an ultrasound machine in real- 

time. Alternatively, one can use an expensive open-architecture ultrasound system to 

obtain the Doppler shift data at any processing step. This ensures that the ultrasound 

machine’s software doesn’t over-filter the data. However, for the purposes of the research 

presented in this thesis, the real-time Doppler signal output from an off-the-shelf 

ultrasound machine is obtained from the soundcard and processed using the MatlabTM 

script presented in Section 6.4.  
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6.2 Experimental Objectives 
 
The aim of this thesis is to address the need for an improved method to detect user 

intention for the ultimate purpose of hand exoskeleton control. The following 

experiments realize this objective by: 

• Testing the accuracy of the original sensing strategy using PW Doppler and B-Scan 

ultrasound to detect the velocity and displacement of a moving “tendon-like” string 

and a beef flexor tendon. This novel sensing strategy obtains the Doppler shift 

signals from the moving object in real-time using the audible data from the 

soundcard. This signal is then processed using the tailor-made MatlabTM script 

described in Section 6.4 

• Demonstrating how the PW Doppler signal taken from a flexor tendon in a human 

index finger can control a robotic finger test-bed to mimic its motion. The tendon’s 

Doppler shifted signal is obtained from the soundcard and processed by the tailor-

made MatlabTM script described in Section 6.4 

6.3 Experimental Overview 
 

6.3.1    Displacement Measurement Accuracy Test 

  In order to realize the above objectives outlined in Section 6.2, these first 

experiments initially address the need for an improved method to access and process 

Doppler-shift data from ultrasound scanners. In these first experiments, the displacement 

measurement accuracy of the proposed audio-based Fourier analysis technique which is 

described in Section 6.4 is compared against that of onboard software of a commercial 

PC-based ultrasound scanner.  This is a feasibility study to show the accurate and real-

time displacement estimation capability of the proposed processing technique. In order to 

achieve this objective, this experiment is separated into the following two parts:  

1) To first test the displacement accuracy of a moving “tendon-like” string by 

comparing the proposed processing technique against the commercial ultrasound 

machine, and 

2) To repeat this experiment with replacing the moving string with a biological 

flexor tendon from a cow.  
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6.3.2    Robotic Finger Demonstration Using the Proposed Processing Technique 

In order to conclusively determine if the proposed processing technique can 

interpret user intention for robotic control, the following experiment is devised. Referring 

to Chapter 3, each FDS tendon attaches to the individual PIP joints in each of the fingers. 

The FDS tendon is responsible for PIP joint rotation towards the palm of the hand. An 

example of this type of joint rotation is the hook grip in Figure 17 H. For this experiment, 

the PIP joint in the index finger is allowed to rotate through a pre-determined set of joint 

rotation angles. The commercial ultrasound scanner will detect the FDS tendon’s velocity 

and the proposed processing technique will estimate the tendon’s displacement. As 

before, the tendon displacements calculated from the ultrasound scanner will be 

compared against the displacements calculated by the proposed processing technique and 

accepted models. The tendon displacements calculated by the proposed processing 

technique will then be translated into joint rotation angles because the robot finger’s 

software requires the input to be in this form. These rotation angles will then be 

transferred offline (for simplicity sake) to the robotic finger in order for the robot to 

mimic the index finger’s joint rotation.  This study is a demonstration of the capabilities 

of the new processing technique to detect user intended finger motion and then to control 

a robotic device.  

6.4     The Proposed Processing Technique Using MatlabTM 
 

  The feasibility experiments in this thesis require an inexpensive method to acquire 

the real-time displacements vs. time data of a moving object. This Doppler shifted data is 

obtained from an off-the-shelf ultrasound machine and the soundcard. As in Figure 29, 

this Doppler-shifted signal is sent to the speakers and the ultrasound machine’s spectral 

processor in real-time. The proposed MatlabTM script uses the inexpensive approach by 

obtaining the signal from the soundcard because raw data access is not possible with the 

ultrasound machine chosen for these experiments.  

 The proposed spectral processing algorithm using MatlabTM is based on the 

general Pulsed-Wave (PW) Doppler signal processing guidelines described in Section 

5.2. For all experiments, the demodulated and filtered signal from the soundcard is first 
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filtered with an n-point moving average filter to remove some of the noise, where n-

samples is chosen to optimize the data in each experiment. In order to determine the 

displacements of the moving object as a function of time, the MatlabTM script then 

performs Fourier spectral analysis to first determine the Doppler shift frequencies in each 

small time interval. This is accomplished by first separating the signal into 512 samples 

(0.0116 seconds) and applying the Hamming window. The number of Fourier transforms 

performed on each window directly affects the resulting frequency and time resolution. 

Referring to Figure 36, the frequency resolution is the height of the “bin” sides on the 

frequency spectrogram. Using a variation of the Fourier transform from Section 5.2 

(Equation (15)), the built-in Fourier transform function in MatlabTM performs 2048 

transforms per window using Equation (20): 

                            ∑
=

−
=

N

1j

1)-(k 1)-(j  i  π2

e x(j))( NkX                               (20) 

Where: 
  X(k) is the signal in the frequency domain 

x(j) is the signal in the time domain 
N is the number of Fourier transforms  
i = 1−  
j = 1, 2, 3, …, N 
k = 1, 2, 3, …, N 

 

Because there are only 512 samples per window, the signal is zero-padded. This means 

that the 513th to the 2048th data points are zeros added to the end of the sampled signal in 

the window. Using this technique, the frequency resolution is calculated as 21.5 Hz by 

using Equation (21). Hence the “bin” height is 21.5 Hz (Figure 39).  

 
       Frequency Resolution  = Sampling rate from the soundcard (samples/second)      (21) 
                                      Number of Fourier transforms/window (samples) 
                                             =  44100 samples/s    
                                                    2048 samples 
                                             = 21.5 Hz 

To improve the time resolution, each window is overlapped by 50%. Therefore, instead 

of the time resolution being 0.0116 seconds, the resolution becomes 0.0058 seconds. This 

means that the “bin” lengths are 0.0058 seconds (Figure 39). 

The Fourier transforms determined by Equation (20) are used to determine the power 

spectral density (PSD) of each “bin”. The PSD is determined by applying Equation (22) 
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to each X(k) determined by Equation (20) in each window and converting to the decibel 

scale (Figure 39). PSD and frequency threshold filters are also employed to remove 

unwanted amplitude and frequency noise. 

                             PSD = | X(k) | 2   and   PSD db = 10 log10  | X(k) | 2                        (22) 

                                                     

 

 

 

 

 

 

 

 

 

Figure 39: Demonstrating the frequency and time resolution on the spectrogram. Here, the 
time resolution is 0.0058 seconds, and the frequency resolution is 21.5 Hz, representing the 
“bin” length and height, respectively. 
 
The resulting frequency spectrogram reveals the Doppler frequencies present at each time 

interval with a given PSD amplitude. These frequencies are converted to velocities using 

the Doppler Equation in Section 4.2 (Equation (13)), with the following parameters: 

 
  fT = 12 MHz 
  θ = determined manually on the B-Scan image before the experiment starts 
  c = 1540 m/s 
 
Because there are several velocities present at each small time interval (corresponding to 

the different moving areas of the sample region), Equation (16) from Section 5.2 is 

employed in order to determine the intensity-weighted-mean-velocity (IWMV) in each 

time interval. A cubic spline curve is then fit to the mean-velocity points using a built in 

function and toolbox in MatlabTM.  A cubic spline is a type of interpolation that uses 

piecewise polynomials on small chosen time intervals. This curve is then integrated in 

order to reveal the displacement vs. time of the moving object. 
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Chapter 7 

Displacement Measurement Accuracy Test 

7.1 String Displacement Measurement Accuracy Test 

 

7.1.1  Experiment Set-Up 

As shown in Figure 40 and Figure 41, the experimental setup consists of a moving 

string and pulley system that mimics biological tendon motion by allowing the string to 

slide by a known displacement under an off-the-shelf Doppler ultrasound scanner 

(LogicScan 128TM by Telemed). The LogicScanTM scanner collects the shift frequencies 

from the moving string with a 12 MHz transducer, which relays the signal to the portable 

scanner that is connected to a PC (Figure 42). The transducer is set on top of two 

ultrasound gel pads with a cut-out standoff wedge (AquaflexTM by Cone Instruments). 

The proper positioning of the transducer is first obtained by moving the string under the 

LogicScan’s Color-Doppler Mode, which highlights the moving areas onscreen. Once the 

proper position is obtained, the scanner then amplifies, demodulates and digitizes the 

echo signal. This is done so that the signal can travel to a PC via USB for further onboard 

processing and displaying purposes. Simultaneously, the scanner’s software on the PC 

will output an audible shift-signal to the PC’s soundcard and will display the velocity 

spectrogram. The soundcard is an integrated SigmaTelTM card with a sampling frequency 

of 44.1 kHz. The audible signal is obtained in real-time, processed and analyzed by the 

Matlab™ script described in Section 6.4. This signal represents the spectrum of velocities 

that are contained in the selected sample volume positioned on top of the string. For the 

purpose of determining the accuracy of estimating the string displacement, the scanner’s 

onboard processing and the proposed audio-based processing techniques are tested using 

20 experimental trials. For each trial, the string and stopper is manually pulled by 9.1 cm 

± 0.1 cm to get into a starting position, and is then allowed to move under gravity with 

the mass and pulley system (Figure 40). 
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Figure 40: Schematic diagram of the experimental setup with (A) the 100 g mass, pulley and 
string, (B) the string, (C) 2 Aquaflex gel pads with cut-out wedge and transducer, and (D) 
string guide and stopper. 
 
 
 
 
 

 
  
 
Figure 41: The LogicScan 128TM scanner and transducer by Telemed connected to a PC 
[86]. 

(A) 

(B) (C) 

(D) 
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(B) 

(A) 

(D) 
(C) 

(E) Soundcard 

(F) Matlab (H) Display 

(G) LogicScan 
Software 

(D) PC 

 
 
 
 
 

 

  

 

 

 
Figure 42: Schematic of the ultrasound scanner’s Doppler signal processing technique: (A) 
Doppler shifted signal from the moving tendon, (B) 12 MHz transducer, (C) LogicScanTM 
scanner which is connected by a USB cable to the PC in (D), (E) the unprocessed Doppler 
shifted signal is sent to the soundcard where it is collected by Matlab™ in (F), and, 
simultaneously, the unprocessed Doppler shifted signal is sent to the scanner’s software in 
(G) for spectral processing and (H) display.  
 

7.1.2    LogicScanTM Scanner’s Onboard Software 

The string is first located with LogicScan’s  transducer and several modes are 

tested in order to determine optimal settings. The final ultrasound settings of 

LogicScanTM are shown in Table 10. During the 20 trials, the string is displaced by 9.1 

cm ± 0.1 cm. Figure 43 shows the resulting velocity spectrogram of the string displayed 

by LogicScan™ scanner’s onboard software for Trial 1. The onboard software then 

performs the velocity-time-integral (VTI) to obtain the estimated displacements. The 

estimated displacements for the 20 trials are shown in Table 11. The mean estimated 

displacement for these trials is 8.59 cm with a standard deviation of 0.50 cm, in the case 

of using LogicScan’s onboard software. 

 

 

 

(A) 

(B) 
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Table 10: Selected settings on LogicScanTM ultrasound scanner. 

Pulse Frequency = 2 kHz Correction Angle = 59º 

Gain = 33% Sample Size = 1 mm 

Power Level = 28% Wall Filter = 7% 

Steering Angle =  -10º Dynamic Range = 30dB 

 

 
     0.122 m/s 
 
 
 
                        
 
                 0    
                                                               Time (s)                                1.57 s            
                                                              
Figure 43: LogicScan™ scanner’s velocity spectrogram for Trial 1’s string velocity vs. time. 

 
Table 11: String displacement estimation using LogicScan’s onboard software. 

 

Trial 
No. 

Displacement
(cm) 

Trial 
No. 

Displacement 
(cm) 

1 8.76 11 8.65 
2 7.47 12 8.58 
3 7.13  13 8.80 
4 8.25 14 8.80 
5 8.50 15 8.69 
6 8.53 16 9.13 
7 8.67 17 8.72 
8 8.73 18 8.78 
9 8.72 19 9.13 
10 8.68 20 9.17 

 

7.1.3    Audio-based Doppler Signal Acquisition and Processing  

      For the previous 20 trials, the Doppler-shifted signal is obtained in real-time from 

the PC soundcard with a written script in Matlab™ which was described in Section 6.4. 

The signal (shown in Figure 44) is then processed offline (only for the sake of simplicity) 

in order to determine the feasibility of the proposed techniques. Note that this signal 
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contains noise from previous digitization step in the LogicScanTM scanner as well as from 

the soundcard. The noise is reduced by a factor of 10 using a 100-point moving average 

filter. Since a moving average filter ultimately alters the characteristics of the signal, 

discretion is used in choosing a suitable sample size of the filter.  

      In order to determine the frequency content of the signal during small time 

intervals, a Short-Term Fourier Transform (STFT) is performed using 2048 transforms 

per window, 512 sample window size, and a 256 sample window overlap. The STFT 

script populates a frequency matrix for each time interval, with a given power level.  

      In order to determine if the audible data set is a feasible approach to real-time data 

acquisition and displacement measurement, the mean velocity curve and displacements 

need to be estimated.  In order to determine the mean velocity curve, the Doppler 

equation (Equation (13)) is used, which transforms the shift frequencies into flow 

velocities.  There are several frequencies (or velocities) present at each moment in time, 

corresponding to the sample volume size of the moving object. In order to find the mean 

velocity curve, the mean velocity at each small time interval is calculated. This is 

achieved by calculating an intensity-weighted mean velocity (IWMV) using Equation 

(16) for each moment in time. The power spectral density filter is set to be greater than 70 

dB to neglect low amplitude noise. 

The resulting data set contains the mean velocity of the moving string as a 

function of time. A cubic spline curve is first fit to this data, and then integrated so that 

the string displacement can be estimated. MatlabTM has many built-in functions to 

perform the STFT, fitting a cubic spline and performing the velocity-time integral.  Using 

this custom Matlab™ script, the mean velocity points, fitted mean velocity curve and 

displacements (via integration) are estimated, as shown in Figures 45 and 46 for Trial 1. 

Using the proposed technique, the mean displacement is 9.14 cm with a standard 

deviation of 0.28 cm. The estimated displacements for all 20 trials are shown in Table 12. 

 



Chapter 7. Displacement Measurement Accuracy Test  

M.A.Sc. Thesis, © K. Stegman, 2009 
 

73

 
Figure 44: Demodulated Doppler shifted audio signal. 

 
Figure 45: Mean velocity data points (in m/s) and fitted curve for Trial 1. 
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Figure 46: Integrated mean velocity (i.e. displacement) curve for Trial 1, showing a 
string displacement of 9.14 cm. 
 
 
 
 
Table 12: String displacement estimation using proposed audio-based Fourier analysis 
technique. 
 

Trial 
No. 

Displacement 
(cm) 

Trial 
No. 

Displacement 
(cm) 

1 9.14 11 9.05 
2 9.30 12 9.22 
3 8.40 13 9.10 
4 8.60 14 9.03 
5 9.03 15 8.93 
6 9.60 16 9.32 
7 9.57 17 8.99 
8 9.43 18 9.08 
9 9.24 19 9.27 
10 9.14 20 9.30 
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7.2 Beef Flexor Tendon Displacement Measurement Accuracy Test 
 

7.2.1 Experiment Set-Up 

Similar to the previous experiment in Section 7.1, the experimental setup consists 

of a moving beef flexor tendon and pulley system that mimics the hand’s tendon motion 

by allowing the beef tendon to slide by a known displacement under the LogicScanTM 

scanner (Figure 47). For the purpose of determining the accuracy of estimating the tendon 

displacement, the scanner’s onboard processing and the proposed audio-based processing 

techniques are tested using 15 experimental trials. For each trial, the tendon is manually 

displaced by 3.0 cm ± 0.1 cm, and allowed to move under gravity as before. 

 

 

                    

                                                                                                       

          

              

 
 
Figure 47: Schematic diagram of the experimental setup with (A) the 100 g mass, pulley and 
string, (B) the beef tendon, (C) 2 Aquaflex gel pads with cut-out wedge and transducer, and 
(D) string guide and stopper. 

7.2.2 LogicScanTM Scanner’s Onboard Software 

The beef tendon is first located with LogicScan’s transducer using the settings in 

Table 10. During the 15 trials, the beef tendon is displaced by moving the string and 

stopper 3.0 cm ± 0.1 cm. Figure 48 shows the resulting velocity spectrogram of the 

tendon displayed by LogicScan™ scanner’s onboard software for Trial 1. The onboard 

software then performs the VTI to obtain the estimated displacements. These excursions 

for the 15 trials are shown in Table 13. The mean estimated displacement using 

LogicScan’s onboard software for these trials is 2.91 cm with a standard deviation of 0.07 

cm. 

 

(A) 

(B) (C) 

(D) 
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0.164 

 

 

 

 

 

 

  

 

 

Figure 48: LogicScan™ scanner’s velocity spectrogram for Trial 1: tendon velocity vs. time. 

 

Table 13: Tendon displacement estimation using LogicScan’s onboard software. 

 

 

 

 

 

 

 

 

 

 

 

7.2.3    Audio-based Doppler Signal Acquisition and Processing 

 For the previous 15 trials, the Doppler-shifted audio signal (shown in Figure 49) 

is simultaneously obtained in real-time using the Matlab™ data acquisition script 

presented in Section 6.4. The signal is then processed offline (only for the sake of 

simplicity) in order to determine the feasibility of the proposed techniques.  Note that this 

signal contains noise from previous digitization step in the LogicScanTM scanner as well 

as from the soundcard. The noise is reduced by a factor of 30  using a 30-point moving 

Trial 

No. 

Displacement

(cm) 

Trial 

No. 

Displacement 

(cm) 

1 2.87 9 2.92 

2 2.96 10 2.93 

3 2.75 11 2.90 

4 2.91 12 2.89 

5 2.86 13 2.89 

6 3.10 14 2.91 

7 2.92 15 2.88 

8 2.97   
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average filter. Since a moving average filter ultimately alters the characteristics of the 

signal, discretion is used in choosing a suitable sample size of the filter.  

      In order to determine the frequency content of the signal during small time 

intervals, a Short-Term Fourier Transform (STFT) is performed using the same methods 

as described in Section 6.4.  The Doppler shifted velocities, intensity-weighted mean 

velocity (IWMV) and mean velocity curves are also obtained using the same methods as 

described in Section 6.4. For this experiment, the power spectral density is set to be 

greater than 80 dB to neglect low amplitude noise. Also, a lower frequency threshold is 

set at 150 Hz to eliminate low frequency noise. Using this custom Matlab™ script, the 

mean velocity points, fitted mean velocity curve and displacements (via integration) are 

estimated, as shown in Figures 50 and 51 for Trial 1. Using the proposed technique, the 

mean displacement from these trials is 2.98 cm with a standard deviation of 0.09 cm. The 

estimated displacements for all 15 trials are shown in Table 14. 

 

 

 

Figure 49: Demodulated Doppler shifted audio signal. 
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Figure 50: Mean velocity data points and fitted curve for Trial 1. 

 
 

 

Figure 51: Integrated mean velocity (i.e. displacement) curve for Trial 1, showing a tendon 
displacement of 3.02 cm. 
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Table 14: Beef Tendon displacement estimation proposed audio-based Fourier analysis 
technique. 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Trial 
No. 

Displacement 
(cm) 

Trial 
No. 

Displacement 
(cm) 

1 3.02 9 3.08 

2 2.90 10 3.02 

3 3.09 11 2.83 

4 2.99 12 2.83 

5 3.07 13 3.03 

6 2.94 14 2.92 

7 2.89 15 3.03 

8 3.12   
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Chapter 8   
 
Robotic Finger Demonstration Using the Proposed Processing 
Technique 

8.1     Acquiring, Processing and Validating the User-Intended Tendon 
Motion Signal 
 
8.1.1    Experimental Set-Up 

  In order to estimate the tendon excursion experienced during the PIP joint 

rotation, the LogicScanTM  Doppler ultrasound scanner detects the Doppler shifted signal 

of the moving tendon (Figure 52). The LogicScan™ scanner collects the shift frequencies 

from the moving tendon with a 12 MHz transducer, which relays the signal to the 

portable scanner that is connected to a PC (as before). The transducer is set on top of an 

Aquaflex TM standoff wedge and holder. This signal is processed similarly to the previous 

experiments. The signal is filtered with a 50-point moving average filter and then a Short-

Term Fourier Transform (STFT) is performed using the same methods as described in 

Section 6.4. The Doppler shifted velocities, intensity-weighted mean velocity (IWMV) 

and mean velocity curves are also obtained using the same methods as described in 

Section 6.4. For this experiment, the power spectral density is set to be greater than 85 dB 

to neglect low amplitude noise. Also, a lower frequency threshold is set at 100 Hz to 

eliminate low frequency noise.  

 
Figure 52: Transducer and wedge placement on wrist. 
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After the tendon is properly located (Section 8.1.2), the first part of the 

experiment obtains and processes the Doppler signal from the moving tendon (Section 

8.1.3). Then, Section 8.1.4 and Section 8.1.5 contains a verification of the proposed 

MatlabTM script by comparing its tendon excursion results to those estimated by standard 

models.  

8.1.2  Locating the Index Finger’s FDS Tendon 

  The LogicScan 128™ ultrasound machine and 12 MHz Linear Array transducer 

probe are set up as in Figure 52. The probe is positioned over the FDS tendon at the wrist 

level. Optimal transducer location is determined by using the Colour Doppler Mode on 

the ultrasound machine. This setting highlights the moving parts of a sample volume on 

the B-Scan image. By moving the index finger back and forth, the FDS tendon is 

highlighted in red and blue, respectively (Figure 53 A, B and C).  The probe is moved 

along the tendon until an optimal Doppler angle could be used. This is difficult because 

the majority of the tendon’s motion is perpendicular to the ultrasound beam. Therefore, a 

stand-off wedge is used between the probe and the skin surface to allow for a better 

Doppler angle.  The acquiring site is at the wrist level because the FDS tendon changes 

direction slightly allowing for an estimated 59 º ± 1 º Doppler angle. The depth of the 

tendon is estimated using the ultrasound’s software as 6.2 mm ± 0.2 mm below the skin’s 

surface. Because of this shallow imaging depth, a 12 MHz transducer with a built-in 

smoothing filter is used. The other PW Doppler parameters used are shown in Table 15. 

 

Table 15: Selected settings on the LogicScan ultrasound scanner. 

Pulse Frequency = 1.5 kHz Correction Angle = 59º 

Gain = 88% Sample Size = 1 mm 

Power Level = 55% Wall Filter = 7% 

Steering Angle =  -10º Dynamic Range = 30 dB 
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(A) 

 
(B) 

 
 

 
(C) 

Figure 53: Colour Doppler image showing the tendon moving away (A) and towards (B) the 
transducer. A typical screen shot of the Duplex mode on the LogicScan™ display is shown 
in (C). Here, the moving FDS tendon is imaged and the resulting PW Doppler spectrogram 
is displayed.  
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8.1.3 The Doppler Shift Signals Obtained by the LogicScanTM and the Proposed 
MatlabTM Script 
 
  In order to further demonstrate the accuracy of the MatlabTM script, the PIP joint 

in the index finger is separately rotated from 0° to 35°,  from 0° to 70°, from 0° to 80°, 

from 0° to 100° and from 0° to 110°. The DIP joint is kept passive and the MCP joint is 

fixed at 0°. The final angle for each total rotation is measured with a goniometer locked 

into the desired position since an active angle monitoring system like Visualeyez TM is 

not available for this experiment (Figure 54). Using the goniometer, the measured final 

rotation angles for each data set have an accuracy of ±2º. The LogicScanTM software 

detects the Doppler shifted signal of the moving tendon.  The onboard software then 

performs the VTI to obtain the estimated displacements as before. This method is 

repeated in order to obtain 3 comparison trials, i.e., 3 sets of  excursion and time data are 

obtained for the total rotation angle of 35°, 70°, 80°, 100°, and 110°. Figure 55 shows the 

resulting velocity spectrogram of the tendon displayed by the LogicScan’s onboard 

software for 80º of total rotation in Trial 2. The total excursions for the total joint 

rotations of 35º, 70º, 80º, 100º, and 110º for the 3 trials are shown in Table 16 along 

with the mean estimated total displacement and standard deviation using LogicScan’s 

onboard software. 

 
 

Figure 54: Goniometer placement. The MCP joint is suppressed, and the total angular 
rotation is fixed at the required angle. 
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0.113 m/s 
 

 

 

 

 

 

 

Figure 55: The LogicScanTM scanner’s velocity spectrogram for 80 degrees of rotation in 
Trial 2 
 

Table 16: Total tendon displacement estimation using LogicScan’s onboard software. 

TRIAL 1 35º PIP 
Rotation 

70º PIP 
Rotation 

80º PIP 
Rotation 

100º PIP 
Rotation 

110º PIP 
Rotation 

Total Tendon 
Excursion 

(mm) 
3.3 6.7 8.0 8.2 11.5 

TRIAL 2 

 
35º PIP 
Rotation 

70º PIP 
Rotation 

80º PIP 
Rotation 

100º PIP 
Rotation 

110º PIP 
Rotation 

Total Tendon 
Excursion 

(mm) 
3.2 7.3 7.7 8.1 12.1 

TRIAL 3 

 
35º PIP 
Rotation 

70º PIP 
Rotation 

80º PIP 
Rotation 

100º PIP 
Rotation 

110º PIP 
Rotation 

Total Tendon 
Excursion 

(mm) 
3.3 6.7 8.5 7.8 12.1 

Mean Total 
Displacement 

(mm) 
3.27 6.90 8.07 8.03 11.90 

Standard 
Deviation 

(mm) 
0.06 0.35 0.40 0.21 0.35 
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For the previous 3 trials of joint rotation data, the Doppler-shifted audio signal is 

simultaneously obtained in real-time using the data acquisition script in Matlab™. The 

signal is then processed offline (only for the sake of simplicity) in order to determine the 

feasibility of the proposed techniques. As mentioned earlier, the raw Doppler signal 

contains noise, which is mostly filtered out using a 50-point moving average filter. Using 

the previously described custom Matlab™ script, the Doppler shifted signal, the velocity 

spectrogram, the mean velocity points, fitted mean velocity curve and displacements (via 

integration) are estimated, as shown in Figures 56-59 for the 80º joint rotation data in 

Trial 2. The total tendon excursions for the total joint rotations of 35º, 70º, 80º, 100º, and 

110º for the 3 trials are shown in Table 17. The mean estimated total displacement and 

standard deviation using the proposed processing method for these trials are summarized 

at the end of Table 17. Overall, there is less variability in the tendon excursions that are 

processed with the proposed method (Table 17) in comparison to the LogicScan’s 

displayed results (Table 16). In the subsequent sections, the validity of the tendon 

excursions estimated by both methods is tested by comparing them to the tendon 

excursions that are estimated by standard models (Section 8.1.4 and 8.1.5). 

 
Figure 56: Demodulated Doppler shifted Signal for the PIP joint rotation of 80 º for Trial 2. 
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Figure 57: Frequency Spectrogram for the 80 degree PIP Joint Rotation for Trial 2. 
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Figure 58: Weighted mean velocity data points and fitted mean velocity curve for the 80 
degree PIP Joint Rotation for Trial 2. 

 
Figure 59: Integrated mean velocity (i.e. displacement) curve for the 80 degree PIP Joint 
Rotation for Trial 2, showing a tendon displacement of 8.8 mm 
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Table 17: Total tendon displacement estimation using the proposed processing MatlabTM 
method  

TRIAL 1 35º PIP 
Rotation 

70º PIP 
Rotation 

80º PIP 
Rotation 

100º PIP 
Rotation 

110º PIP 
Rotation 

Total Tendon 
Excursion 

(mm) 3.6 7.1 

 
 

8.4 

 

10.4 11.5 

TRIAL 2 

 
35º PIP 
Rotation 

70º PIP 
Rotation 

80º PIP 
Rotation 

100º PIP 
Rotation 

110º PIP 
Rotation 

Total Tendon 
Excursion 

(mm) 
3.4 7.3 8.8 10.2 11.7 

TRIAL 3 

 
35º PIP 
Rotation 

70º PIP 
Rotation 

80º PIP 
Rotation 

100º PIP 
Rotation 

110º PIP 
Rotation 

Total Tendon 
Excursion 

(mm) 
3.7 7.6 8.8 10.3 11.8 

Mean Total 
Displacement 

(mm) 
3.57 7.33 8.67 10.3 11.67 

Standard 
Deviation 

(mm) 
0.15 0.25 0.23 0.1 0.15 

 

8.1.4    Brand and Hollister Model: Correlating Tendon Excursion to PIP Joint  

            Rotation Angles 

In order to further validate the total tendon excursions that are estimated using the 

proposed MatlabTM script (or the LogicScanTM software), the estimated total tendon 

displacements should be compared to the actual total displacements experienced from 

PIP rotation. This is a complicated task because the actual tendon displacements can only 

be measured non-invasively in these experiments. However, an accepted model in the 

literature correlates the rotation angle of the joint with the tendon excursion experienced 
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[107]. Referring to Figure 60, the rotation angle θ can be estimated if the tendon 

excursion D and radius m of the joint (moment arm) is known. This model assumes that 

the tendon is free to move and is not limited by adhesions and interconnections.                                        

             θmD =                                                              (23) 

Where: 

θ is the rotation angle in radians 

D is the tendon excursion  

m is the moment arm (joint radius and tendon thickness) 

 
 

Figure 60: Lengthwise tendon excursion from joint rotation [107]. 

 

Using the tendon pulley model described by Equation (23), the total tendon 

excursions can be estimated by using the final rotation angles measured with the 

goniometer and an approximated moment arm. The simplest approximation of the 

moment arm of the PIP joint is to measure the joint, tendon and skin diameter with a 

digital calliper. This moment arm is half of this measured diameter. The digital calliper 

estimates this diameter as 12.07 mm, giving an estimated moment arm of 6.04 mm ± 0.01 

mm. Using this moment arm, Equation (23) and the rotation angles measured with the 

goniometer (35º, 70º, 80º, 100º, and 110º), the total tendon excursions can be estimated 

and compared to the MatlabTM and LogicScanTM estimations. As shown in Table 18, the 

total tendon displacements that are estimated by this method are most comparable to 

D

m
θ
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those processed by the script in MatlabTM. 

 

 

Table 18: Total tendon displacement estimation using the Brand and Hollister model [107]. 

 35º PIP 
Rotation 

70º PIP 
Rotation 

80º PIP 
Rotation 

100º PIP 
Rotation 

110º PIP 
Rotation 

Total Tendon 
Excursion 

(mm) 
3.69 7.38 8.43 10.54 11.60 

 

 

 For comparison, the moment arm can also be approximated using the total tendon 

excursions estimated by the proposed processing script in MatlabTM. For each of the 3 

trials, the total tendon excursion estimated by the MatlabTM script is plotted against its 

corresponding final rotation angle (measured with the goniometer) using Table 17 

(Figures 61-63). A linear interpolation is fit to these plots in order to estimate the slope 

(or moment arm), as is shown in Table 19. Using Equation (23) and the slope on each 

plot, the average moment arm is estimated as 6.03 mm with a standard deviation of 0.058 

mm. This is comparable to the moment arm that is estimated by the digital calliper. 

 

Table 19:  The estimated moment arms from Figures 59-61. 

Trial Estimated Moment Arms (mm) 

1 6.0 

2 6.0 

3 6.1 

Mean 6.03 mm (standard deviation 0.058 mm) 
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Figure 61: Tendon Excursion (m) vs. PIP Rotation Angle (radians) plot for Trial 1. The fitted 
linear polynomial estimates a moment arm of 6 mm. 

 
Figure 62: Tendon Excursion (m) vs. PIP Rotation Angle (radians) plot for Trial 2. The fitted 
linear polynomial estimates a moment arm of 6 mm. 
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Figure 63: Tendon Excursion (m) vs. PIP Rotation Angle (radians) plot for Trial 3. The 
fitted linear polynomial estimates a moment arm of 6.1 mm.  
 

 

8.1.5 Minimum Jerk Profile 

In order to further validate the tendon excursions estimated by the proposed 

processing MatlabTM script, the tendon excursions can be compared to another accepted 

model. As described by Bundhoo et.al. [122], jerk is an accepted quantity of evaluating 

motor smoothness of the human limbs. It is defined as the time derivative of acceleration, 

and each joint should smoothly follow a trajectory that minimizes the sum of the square 

jerk, i.e: 

                                             ∫=
2 t 

1 t 

2)(
2
1 minimize dttJ θ&&&                                                   (24) 

Where: 

J is the jerk, and θ&&&  is the jerk of the trajectory θ(t) 
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The general solution to equation is: 

 

                                     5
5

4
4

3
3

2
210)( tAtAtAtAtAAt +++++=θ                                 (25) 

 

Where: 

  A0 to A5 are constant parameters 

 

By setting D = t f – t i in Equation (25) and using the conditions θ(ti) = θi and θ(tf) = θf, 

Equation (25) becomes: 
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For the sake of simplicity, the tendon excursions as a function of time processed 

by the proposed MatlabTM script for the third 70 º trial are used for comparison to the 

Minimum Jerk model (Table 20). The tendon excursions as a function of time determined 

by the MatlabTM script are translated into rotation angles as a function of time using the 

Brand and Hollister approximation and the average moment arm determined in Section 

8.1.4 (6.03 mm) for the MatlabTM processed excursions. The corresponding rotation 

angles are shown in Table 21. The final rotation angle is estimated as 73.0 degrees using 

this method. This value is comparable to the total rotation angle measured by the 

goniometer (70º±2º).  
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Table 20: Tendon excursions and time for the third trial of 70 degree rotation, showing a 
total tendon displacement of 0.764 cm. The total rotation took place in 0.205 seconds. 
 
 

Tendon Excursion 

(cm) 
Time (s) 

Tendon Excursion 

(cm) 
Time (s) 

0.000 0.000 0.449 0.105 

0.005 0.005 0.489 0.110 

0.007 0.010 0.529 0.115 

0.002 0.015 0.577 0.120 

0.013 0.020 0.625 0.125 

0.006 0.025 0.662 0.130 

0.026 0.030 0.692 0.135 

0.046 0.035 0.718 0.140 

0.071 0.040 0.743 0.145 

0.098 0.045 0.757 0.150 

0.119 0.050 0.764 0.155 

0.140 0.055 0.777 0.160 

0.165 0.060 0.777 0.165 

0.194 0.065 0.784 0.170 

0.224 0.070 0.775 0.175 

0.251 0.075 0.790 0.180 

0.281 0.080 0.792 0.185 

0.316 0.085 0.786 0.190 

0.348 0.090 0.779 0.195 

0.375 0.095 0.784 0.200 

0.408 0.100 0.764 0.205 
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Table 21: Estimated angular positions of Trial 3’s 70 degree (goniometer) rotation. The 
total rotation estimated by the MatlabTM script is 73.0 degrees.  
 

Angular Position 

(degrees) 
Time (s) 

Angular Position 

(degrees) 
Time (s) 

0.00 0.000 42.88 0.105 
0.50 0.005 46.68 0.110 
0.70 0.010 50.52 0.115 
0.20 0.015 55.08 0.120 
1.24 0.020 59.64 0.125 
0.61 0.025 63.19 0.130 
2.52 0.030 66.04 0.135 
4.39 0.035 68.54 0.140 
6.76 0.040 70.94 0.145 
9.35 0.045 72.30 0.150 
11.32 0.050 73.00 0.155 
13.34 0.055 74.20 0.160 
15.72 0.060 74.20 0.165 
18.53 0.065 74.90 0.170 
21.36 0.070 74.00 0.175 
23.99 0.075 75.40 0.180 
26.87 0.080 75.60 0.185 
30.16 0.085 75.10 0.190 
33.19 0.090 74.40 0.195 
35.81 0.095 74.90 0.200 
38.98 0.100 73.00 0.205 

 
 

Using Equation (26), the total time, and the data presented in Table 21, the 

Minimum Jerk profile and the proposed MatlabTM method is compared for accuracy. The 

Minimum Jerk’s angular profile is shown in Table 22 (using the same time steps as in the 

MatlabTM script) and displayed in Figure 64 along with the proposed method’s angular 

profile for comparison. 
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Table 22: Calculated minimum jerk rotational position using the same time steps as the 
MatlabTM method in Table 21. The total rotation angle is estimated as 70.8 degrees. 
 

Angular Position 

(degrees) 
Time (s) 

Angular Position 

(degrees) 
Time (s) 

0.00 0.000 37.02 0.105 
0.01 0.005 40.24 0.110 
0.08 0.010 43.41 0.115 
0.25 0.015 46.51 0.120 
0.57 0.020 49.51 0.125 
1.06 0.025 52.37 0.130 
1.76 0.030 55.08 0.135 
2.68 0.035 57.60 0.140 
3.84 0.040 59.93 0.145 
5.24 0.045 62.04 0.150 
6.88 0.050 63.92 0.155 
8.76 0.055 65.56 0.160 
10.87 0.060 66.96 0.165 
13.20 0.065 68.12 0.170 
15.72 0.070 69.04 0.175 
18.43 0.075 69.74 0.180 
21.29 0.080 70.24 0.185 
24.29 0.085 70.55 0.190 
27.39 0.090 70.72 0.195 
30.56 0.095 70.79 0.200 
33.78 0.100 70.80 0.205 
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Figure 64: The angular profile of the proposed sensing method in comparison to the angular 
profile of the Minimum Jerk approximation. 
 
 
 
  For the proposed method, the initial and final rotation data points in Figure 64 are 

not as smooth as the Minimum Jerk approximation’s angular profile. This is mainly due 

to the fact that the moment arm is assumed to be constant throughout rotation (Brand and 

Hollister model) when translating the tendon excursion into rotation angles for the 

proposed method in MatlabTM . Therefore, the rotation angles that are calculated using 

Equation (23) will have inaccuracies in the regions where the moment arm is not 

constant. This is discussed further in Chapter 9. 
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8.2 Controlling the Robotic Finger 
 
8.2.1    The Robotic Finger System 

  As shown in Figures 65 A and B, the robotic finger testbed used in this 

demonstration is a 4 degree-of-freedom (DOF) biomimetic design with shape memory 

alloy (SMA) actuation [122]. The testbed itself is kinematically and anthropomorphically 

accurate physical model of the natural human hand. The artificial index finger has 2 

degree-of-freedom articulations of the MCP joint. The PIP and DIP joints are modeled as 

hinge joints since they are 1 degree-of-freedom joints with articulations in the plane 

perpendicular to the palmar hand surface (Figure 66).The range of motion of these joints 

are summarized in Table 23.  

 

 

 

 

 

 

 

 
 
Figure 65: (A) the normal resting state of the robotic finger, and (B) the flexed state [122]. 

 

 
Figure 66: Kinematic architecture of the artificial finger [122]. 
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The experimental set up includes the artificial finger, SMA actuators, a tendon 

mimicking microfibre line, a proportional controller, optical breadboard, data acquisition 

board, and a computer with LabVIEW™ software (Figures 67 A,B).    

 

  
 
Figure 67: (A) Artificial finger and 6 SMAs mounted on an optical board, and (B) the 
artificial finger prototype [122]. 
 

Table 23: Range of motion of the artifical finger [122]. 

Joint Range of Motion (Degrees) 
MCP Adduction/Abduction 40 

MCP Flexion/Extension 90 
DIP Flexion/Extension 100-110 
PIP Flexion/Extension 80 

 
 

8.2.2 Calibrating the Robotic Finger 

To provide a validation of the new sensing strategy presented in this thesis, the 

robotic finger’s PIP rotation must be calibrated in order to have a proper comparison 

method. Because the robotic finger’s software interprets angular position in terms of 

analogue-to-digital (A/D) counts, a calibration method must be devised to correlate A/D 

counts to rotational position. This calibration will allow for the input of data in Table 21 
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(from the proposed sensing method), as well as the robotic finger’s output data to be 

converted to angular position for comparison. 

Therefore, the calibration of the various joint angle sensors is performed using a 

goniometer designed for human finger joint angle measurement. The artificial finger’s 

PIP joint is moved to 0°, 10°, 20°, 30°, 40°, 50°, 60°, and 70° in separate trials (each with 

accuracy ± 1º) and the corresponding A/D counts are recorded and shown in Table 24. 

By plotting the robot’s PIP rotation angles as a function of A/D counts and fitting an 

exponential curve in MatlabTM, the calibration is achieved and the relationship between 

A/D counts and rotation angle is known (Figure 68).  This will allow for the robot’s 

output of A/D counts to be converted into rotation angles for comparison. The fitted 

exponential equation that correlates rotational position to A/D counts is shown in 

Equation (27): 

                                                  
⎟
⎠
⎞

⎜
⎝
⎛ −

−

= 83.55
8.562 

)(
C

eCθ                                                            (27)                       

Where:   

  θ(C) is the angular position (degrees) 

 C is the A/D counts 

 

Table 24: A/D counts and rotational angles for calibrating the robot finger 

Angular Position 
(degrees) A/D Counts 

0 622 
10 433 
20 391 
30 370 
40 359 
50 346 
60 335 
70 324 
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Figure 68: Correlating the robot finger’s output rotation angles and A/D Counts by fitting 
an exponential curve.  
 
 
 

Similarly, the A/D counts as a function of rotation angle must be known in order 

to input the proposed method’s angular information to the robot’s software. The robot 

finger’s data from Table 24 is plotted and a natural logarithmic curve is fit (Figure 69). 

The fitted logarithmic equation that correlates A/D counts to rotational position is shown 

in Equation (28):  

                                              6.562)ln(83.55)( +−= θθC                                              (28) 

Where:   

  θ(C) is the angular position (degrees) 

 C is the A/D counts 

 

Not surprisingly, Equation (27) and Equation (28) are inverses of each other.  
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Figure 69: Correlating the robot finger’s A/D Counts to rotation angles by fitting 
logarithmic curve.  

 

 
The rotation angles that are estimated from the processed user intended tendon 

motion signal in Table 21 are used as an input to control the robotic finger.  This is 

because in order to demonstrate robotic finger control, the input signal data should be 

from one set of tendon excursion vs. time data that is converted to rotation angles vs. time 

using the estimated moment arm and Equation (23). This is because the eventual goal of 

this work is to automate the entire process and have real-time acquisition, processing and 

robotic control. Also, the robotic finger’s software is set up to have rotation angles 

converted to A/D counts as an input.  

These angles from the third 70º trial are converted to A/D counts using Equation 

(28), and are shown in Table 25 and Figure 70. 
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Table 25: A/D counts and rotational angles for calibrating the input data using the 
proposed method 

Angular Position 

(degrees) 
A/D Counts 

Angular Position 

(degrees) 
A/D Counts 

0.00 640 42.88 353 
0.50 601 46.68 348 
0.70 583 50.52 344 
0.20 652 55.08 339 
1.24 550 59.64 334 
0.61 591 63.19 331 
2.52 511 66.04 329 
4.39 480 68.54 327 
6.76 456 70.94 325 
9.35 438 72.30 324 
11.32 427 73.00 323 
13.34 418 74.20 322 
15.72 409 74.20 322 
18.53 400 74.90 322 
21.36 392 74.00 322 
23.99 385 75.40 321 
26.87 379 75.60 321 
30.16 372 75.10 321 
33.19 367 74.40 322 
35.81 363 74.90 322 
38.98 358 73.00 323 
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Figure 70: Correlating the proposed method’s A/D counts to rotation angles by using the 
fitted logarithmic curve.  
 

8.2.3    Controlling the Robotic Finger 

The rotation angles that are estimated from the processed user intended tendon 

motion signal are used as an input to control the robotic finger.  These angles from the 

third 70º trial are converted to A/D counts using the calibration method described in 

Section 8.2.2, and are entered into a lookup table on the LabVIEW™ software. The 

robotic finger’s software interprets this data and rotates to the specified locations with 

SMA actuation. This is accomplished by applying a voltage to heat the SMA wire 

internals.  

Once the robot’s PIP flexion is completed, a vector of A/D counts over the joint’s 

range of motion is produced from LabVIEWTM.  The protocol for this demonstration is to 

use the fitted exponential curve (Equation (27)) from the calibration section 8.2.2 to 

convert these A/D counts back to joint rotation angles. The resulting A/D counts and 

rotation angles for this trial is displayed in Table 26. A comparison plot is then produced 
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to show the rotation angles from the processed tendon motion (Table 21) and minimum 

jerk approximation (Table 22), with the rotation angles estimated from the robot finger.  

Because the robot finger and the human finger all rotate at different rates, the slopes from 

the curves will be different. Furthermore, the robot finger took 17.9 s to complete 

rotation, and the proposed method took 0.205 s. A scaling factor is applied to the time on 

the x-axis (illustrated in Figure 71) for better comparison.  

 

Table 26: The robot finger’s output A/D counts and rotation angles of the MatlabTM input 
data. 

Counts 
Rotation 
Angle 

(degrees) 
Counts 

Rotation 
Angle 

(degrees)
Counts 

Rotation 
Angle 

(degrees) 
638 0.26 634 0.28 365 34.36 
638 0.26 629 0.31 364 35.44 
638 0.26 621 0.35 363 36.12 
638 0.26 603 0.49 361 37.42 
639 0.26 581 0.72 359 38.45 
638 0.26 562 1.02 358 38.88 
638 0.26 540 1.51 357 39.58 
638 0.26 523 2.03 356 40.43 
638 0.26 500 3.08 356 40.93 
638 0.26 469 5.40 355 41.52 
638 0.26 445 8.32 354 42.36 
638 0.26 432 10.34 353 43.02 
638 0.26 424 12.08 352 43.66 
638 0.26 414 14.40 351 44.65 
638 0.26 407 16.37 349 45.96 
638 0.26 401 18.04 349 46.26 
637 0.26 398 19.02 348 47.06 
638 0.26 394 20.38 346 48.30 
637 0.26 390 21.97 345 49.19 
638 0.26 387 23.17 345 49.72 
637 0.26 385 24.26 344 49.92 
638 0.26 382 25.29 344 50.67 
638 0.26 381 26.08 343 51.60 
638 0.26 378 27.39 342 51.94 
638 0.26 376 28.62 341 52.93 
637 0.26 374 29.63 341 53.18 
639 0.26 372 30.57 341 53.34 
638 0.26 369 31.96 341 53.59 
638 0.26 368 32.64 340 54.42 
637 0.26 367 33.45 339 54.97 
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Table 26 continued 

Counts 
Rotation 
Angle 

(degrees) 
Counts 

Rotation 
Angle 

(degrees)
Counts 

Rotation 
Angle 

(degrees) 
339 54.94 332 62.53 325 71.01 
339 55.20 331 62.46 325 70.66 
338 56.05 331 63.38 324 70.83 
338 55.89 331 63.76 325 71.25 
338 56.08 331 63.65 324 71.93 
337 56.79 330 63.99 324 71.34 
337 56.99 330 64.55 324 71.59 
337 56.85 330 64.87 324 71.76 
337 57.09 327 67.88 324 72.32 
336 57.81 327 68.32 323 72.19 
336 58.15 327 68.61 324 72.10 
336 57.77 327 68.01 324 72.78 
336 58.63 326 68.08 323 72.10 
335 59.04 327 68.77 323 72.19 
335 59.12 326 69.14 323 72.87 
335 59.36 326 68.65 323 73.57 
334 60.04 326 68.94 323 72.82 
334 60.39 326 69.22 323 73.52 
334 60.32 326 69.51 323 73.78 
334 60.42 326 69.06 323 73.31 
333 61.25 325 69.35 323 73.69 
333 61.36 326 70.08 323 73.61 
333 61.43 325 70.21 323 73.18 
333 61.14 325 70.12 324 72.91 
332 62.01 325 70.17 324 73.31 
332 62.60 325 70.59   

 

The total estimated rotation angle for the robot finger’s output is 73.3 degrees. For 

comparison, the input rotation angle from the proposed method is 73.0 degrees. The 

difference between the curves in Figure 71 is mainly due to the mechanical issues of the 

robotic finger. This is further discussed in Chapter 9. This study conclusively 

demonstrates the capabilities of the proposed PW Doppler sensing and processing 

method. 
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Figure 71: Comparison of the rotation angles vs. time for the three robot finger trials, the 
proposed method’s and the minimum jerk’s angular information. Here, the time axis is 
scaled such that the curves all start and stop at the same time.
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Chapter 9  
 
Discussion 
 

In this thesis, a feasibility study was presented in order to conclusively determine 

if the real-time Doppler audio from an ultrasound scanner can accurately detect tendon 

motion for eventual assistive exoskeleton uses. By first moving a tendon mimicking 

string 9.1 cm ± 0.1 cm under the LogicScan™ scanner’s transducer, the scanner’s 

software displayed the velocity spectrogram, and the resulting Doppler-shifted 

frequencies was output and collected as an output signal in real-time. The scanner’s 

onboard software estimated the mean string displacement to be 8.59 cm with a standard 

deviation of 0.50. These results present poor accuracy and high variability. 

In this experiment it was also shown that the Doppler shifted frequencies of the 

moving string are also in the audible range and can be transformed into audio signals. 

Using the audible signals from a soundcard is an inexpensive way to obtain the Doppler 

frequency information in real-time since most commercial scanners do not allow for data 

access. This audio signal was obtained in real-time and processed in Matlab™. Using the 

proposed audio-based Fourier analysis, the estimated mean string displacement was 9.14 

cm with a standard deviation of 0.28 cm. These results were quite accurate and within an 

acceptable range of the actual string displacements. 

A second experiment was performed to extend this idea by using a biological 

tendon in order to further determine the feasibility. By moving a beef flexor tendon string 

3.0 cm ± 0.1 cm under the LogicScan™ scanner’s transducer, the scanner’s software 

displayed the velocity spectrogram, and the resulting Doppler-shifted frequencies were 

output and collected as an output signal in real-time. The scanner’s onboard software 

estimated the mean tendon displacement to be 2.91 cm with a standard deviation of 0.07 

cm.  

The second experiment shows that the Doppler shifted frequencies of the moving 

beef tendon were also in the audible range and can be transformed into audio signals. 

This audio signal was obtained in real-time and processed in Matlab™. Using the 

proposed audio-based Fourier analysis, the estimated mean tendon displacement was 
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found to be 2.98 cm with a standard deviation of 0.09 cm. These results were quite 

accurate, better than the ultrasonic scanner’s measurements and within an acceptable 

range of the actual tendon displacements.  

 The variability in both the string and beef tendon experiments from the 

LogicScan’s results were mainly due from the applied high-pass Wall Filter which 

eliminates 7% of the lowest frequencies in the range. This would ultimately affect the 

outcome of the displacement estimation because there would be excessive weighting to 

the higher amplitude frequencies (or velocities). This was because the mean frequency 

(or velocity) at a given time was calculated using Equation (16). This equation weights 

the velocities according to the amplitude of their power spectral density. Using an 

inappropriate frequency (or velocity) cut-off would result in an inaccurate mean velocity 

curve, velocity-time integral and thus, displacement. Furthermore, the ultrasound’s 

software was factory calibrated to be used for many different applications, such as 

imaging deep and surface anatomical structures, fetal imaging and blood flow. Therefore, 

the types of filters and approximations implemented have to be general enough for these 

various uses. However, detailed error sources related to this are unknown because the 

software’s approximations and processing methods are proprietary materials for the 

manufacturer. Furthermore, a fundamental error occurs with the Doppler correction 

angle. Recall that an ultrasound gel pad with a stand off wedge was used in the 

experiments in order to minimize the correction angle. This was because the tendon flow 

was not parallel to the ultrasound wavefront. The correction angle was visually 

determined on the B-Scan image as 59º. This error appears in both processing techniques 

whenever the Doppler equation in Equation (13) was employed. Therefore, because the 

tendon flow was not parallel to the transducer, the correction angle induces an 

approximate 6% error maximum, in all trials. This 6% error allows the ultrasound’s 

calculated displacements to be within the limits of an acceptable range. Furthermore, 

there exist methods other than Fourier transforms in order to estimate the frequency 

content of the signal. This is discussed further in the Future Works section (Chapter 10). 

The successful feasibility study presented in the first two experiments show that 

Pulsed Wave (PW) Doppler can accurately measure the small velocity and displacements 

of a moving human “tendon-like” object (string and beef tendon). Furthermore, real-time 
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Doppler data access from an ultrasound machine was made possible by using the audio 

output. The processed audio has also shown to be more accurate than the ultrasound 

scanner’s software-based results in both experiments.  

Now that the ability of the proposed sensing and processing method has been 

demonstrated, the feasibility study was extended further to include displacement 

monitoring of biological human tendons to access hand functions and to control a robotic 

device. After first locating the tendon, 3 trials containing the tendon excursion data were 

collected by the LogicScanTM ultrasound scanner for the total PIP joint rotations of 35º, 

70º, 80º, 100º, and 110º. The onboard software then performed the VTI to obtain the 

estimated displacements. The mean estimated total displacements and standard deviation 

using LogicScan’s onboard software for these trials is summarized in Table 27. 

 

Table 27: Mean tendon displacements and standard deviation using LogicScan’s onboard 
software for the 3 trials. 

Rotation 
Angle 

35º PIP 
Rotation 

70º PIP 
Rotation 

80º PIP 
Rotation 

100º PIP 
Rotation 

110º PIP 
Rotation 

Mean Total 
Displacement 

(mm) 
3.27 6.90 8.07 8.03 11.90 

Standard 
Deviation 

(mm) 
0.06 0.35 0.40 0.21 0.35 

 
For the previous 3 trials of joint rotation data, the Doppler-shifted audio signal 

was simultaneously obtained in real-time using a data acquisition script in Matlab™. 

Using the previously described custom Matlab™ script, the Doppler shifted signal, the 

velocity spectrogram, the mean velocity points, fitted mean velocity curve and 

displacements (via integration) were estimated. The mean estimated total displacement 

and standard deviation using the proposed processing method for these trials are 

summarized in Table 28. For comparison, the invasive mean total tendon excursion 

measurements of the FDS tendon in active excursion was estimated in the literature as 14 

mm in cadavers and 10 mm during surgery, each having the PIP joint rotate 90º [112].  
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However, it is important to note that the tendon excursion experienced during rotation is 

highly individualistic. Overall, there was less variability in the tendon excursions that 

were processed with the proposed method (Table 28) in comparison to the LogicScan’s 

displayed results (Table 27). 

 

Table 28: Mean tendon displacements and standard deviation using the proposed 
processing method for the 3 trials.  

Rotation 
Angle 

35º PIP 
Rotation 

70º PIP 
Rotation 

80º PIP 
Rotation 

100º PIP 
Rotation 

110º PIP 
Rotation 

Mean Total 
Displacement 

(mm) 
3.57 7.33 8.67 10.3 11.67 

Standard 
Deviation 

(mm) 
0.15 0.25 0.23 0.1 0.15 

 

In order to further validate the tendon excursions that were estimated using the 

proposed MatlabTM script (or the LogicScanTM software), the estimated tendon 

displacements should be compared to the actual displacements experienced during PIP 

rotation. This was a complicated task because the actual tendon displacements can only 

be measured non-invasively in these experiments. An accepted model in the literature, 

called the Brand and Hollister tendon-pulley model, correlated the rotation angle of the 

joint with the tendon excursion experienced [107]. Using this tendon pulley model 

described by Equation (23), the total tendon excursions were estimated by using the final 

rotation angles measured with the goniometer and an approximated moment arm. The 

simplest approximation of the moment arm of the PIP joint was measured with a digital 

calliper and estimated as 6.04 mm ± 0.01 mm. Using this moment arm, Equation (23) and 

the rotation angles measured with the goniometer (35º, 70º, 80º, 100º, and 110º), the 

tendon excursions were estimated and compared to the MatlabTM and LogicScanTM 

estimations. As shown in Table 29, the total tendon displacements estimated by this 

method are most comparable to those processed by the script in MatlabTM. 
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Table 29: Tendon displacement estimation comparison 

Total Tendon 
Excursion 
(mm) for: 

35º PIP 
Rotation 

70º PIP 
Rotation 

80º PIP 
Rotation 

100º PIP 
Rotation 

110º PIP 
Rotation 

 

LOGICSCAN 

 

3.27 6.90 8.07 8.03 11.90 

 

MATLAB 

 

3.57 7.33 8.67 10.30 11.67 

BRAND 
AND 

HOLLISTER: 
 

3.69 7.38 8.43 10.54 11.60 

 

 

 For comparison, the moment arm was also approximated using the total tendon 

excursions estimated by the proposed processing script in MatlabTM. For each of the 3 

trials, the total tendon excursion estimated by the MatlabTM script was plotted against its 

corresponding final rotation angle (measured with the goniometer), a linear interpolation 

was fit, and the slope was determined. Using Equation (23) and the slope on each plot, 

the average moment arm was estimated as 6.03 mm with a standard deviation of 0.058 

mm. This was comparable to the moment arm that is estimated by the digital calliper. 

Essentially, Equation (23) was also used in the literature to compare their 

estimated tendon excursions to those calculated by this equation [90]. Generally, this 

technique has limitations because it assumes the tendon was without interconnections, 

free to move, and constant throughout the rotation of the finger [107]. In actuality, the 

tendons have interconnections which will alter the actual displacement of a tendon during 

rotation. Furthermore, there is much debate on the role of tendon excursion with full 

index finger flexion. This is because there are discrepancies in the reported literature of 

the contributions of flexors and intrinsic muscles to MCP flexion, for example [113,123-
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124]. To temporarily avoid this problem, the protocol presented in this thesis does not 

consider MCP flexion; the active PIP and passive DIP flexion was only considered.  

Nevertheless, the tendon excursion results presented in this thesis are consistent with the 

literature for full PIP and DIP flexion [90,112]. 

It is important to note that the total displacements determined by the proposed 

method were compared to the ultrasound machine’s total estimated displacements and the 

model’s total displacements. This was because continuous displacement vs. time results 

were not available for the ultrasound machine (the total displacements were just 

reported). Also, an active external displacement monitoring system was not available for 

the experiments. Therefore, only the total displacements estimated by each method were 

compared. However, the proposed script does allow for continual displacement vs. time 

measurements (as shown in Table 20). Continual displacement vs. time measurements is 

an important property for real-time control of an exoskeleton.  

In order to further validate the tendon excursions estimated by the proposed 

processing MatlabTM script, the tendon excursions were compared to another accepted 

model called the Minimum Jerk approximation. As described by Bundhoo et.al. [122], 

jerk is an accepted quantity of evaluating motor smoothness of the human limbs 

(Equation (25)).  

For the sake of simplicity, the tendon excursions as a function of time processed 

by the proposed MatlabTM script for the third 70 º trial were used for comparison to the 

Minimum Jerk model. The tendon excursions as a function of time were translated into 

rotation angles as a function of time using the Brand and Hollister approximation and the 

average moment arm determined in Section 8.1.4 (6.03 mm) for the MatlabTM processed 

excursions. The final rotation angle was estimated as 73.0 degrees using this method. 

This value was comparable to the total rotation angle measured by the goniometer 

(70º±2º).  As previously discussed, the main error sources using the proposed processing 

method in MatlabTM included noise from the soundcard, the Doppler angle uncertainty 

and the choice of a cut-off frequency threshold and power spectral density threshold.  

 

Using Equation (26), the Minimum Jerk profile and the proposed MatlabTM 

method were compared for accuracy. The Minimum Jerk’s angular profile was shown in 
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Table 22 (using the same time steps as in the MatlabTM script) and displayed in Figure 64 

along with the proposed method’s angular profile for comparison. Although their angular 

profiles were comparable, there exists the ability to improve the experimental curve by 

performing a different data acquisition method with increased accuracy. It would be more 

accurate to use an optical motion tracking system such as VisualeyezTM to measure 

rotational data as a function of time with simultaneous tendon excursion estimations 

using the proposed technique. This would estimate a moment arm with increased 

accuracy. For the proposed method in MatlabTM, the initial and final rotation data points 

in Figure 64 were not as smooth as the Minimum Jerk approximation. This was mainly 

due to the fact that the moment arm was assumed to be constant throughout rotation 

(Brand and Hollister model). Therefore, the rotation angles that were calculated using 

Equation (23) will have inaccuracies in the regions where the moment arm was not 

constant. Furthermore, there exist other rotational profiles which should be used in order 

to correlate tendon excursion to angular rotation (other than the one used in Equation 

(23)). This is because the moment arms of the joints are actually not constant throughout 

rotation [113]. Using an improved correlation between rotation angles and tendon 

excursion will allow for increased accuracy. These improvements are further described in 

the Future Works section (Chapter 10). Nevertheless, the curves in Figure 64 using the 

Matlab script and the Minimum Jerk approximation were comparable. The final rotation 

angle estimated by the Minimum Jerk approximation was 70.8 degrees. This was 

compared to the goniometer estimation of 70.0 degrees and the MatlabTM method 

estimation of 73.0 degrees. Overall, the results determined by the proposed processing 

script in MatlabTM were shown to represent an accurate depiction of a tendon excursion 

event.  

 

In order to demonstrate robotic finger control, the input signal data should be 

from one set of tendon excursion vs. time data that was converted to rotation angles vs. 

time using the estimated moment arm and Equation (23). This was because the eventual 

goal of this work is to automate the entire process and have real-time acquisition, 

processing and robotic control. Also, the robot finger’s software requires the input data to 

initially be in terms of rotation angles. For the sake of simplicity, the rotation angles that 
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were estimated from the processed user intended tendon motion signal in Table 21 were 

used as an input to control the robotic finger.   

Since the robotic finger’s software interprets angular position in terms of A/D 

counts, a calibration method was devised to correlate A/D counts to rotational position. 

This calibration allows for the input of data from the proposed sensing method, as well as 

the robotic finger’s output data to be converted back to angular position for comparison. 

The artificial finger’s PIP joint was moved to 0°, 10°, 20°, 30°, 40°, 50°, 60°, and 70° in 

separate trials and the corresponding A/D counts were recorded and shown in Table 24. 

By plotting the robot’s PIP rotation angles as a function of A/D counts and fitting an 

exponential curve in Matlab TM, the calibration was achieved and the relationship 

between rotation angle and A/D counts was known (Figure 68).  This will allow for the 

robot’s output of A/D counts to be converted into rotation angles for comparison. The 

fitted exponential equation that correlates rotational position to A/D counts was shown in 

Equation (27).  

Similarly, the A/D counts as a function of rotation angle must be known in order 

to input the proposed method’s angular information to the robot’s software. The robot 

finger’s data from Table 24 was plotted and a natural logarithmic curve was fit (Figure 

69). The fitted logarithmic equation that correlates A/D counts to rotational position was 

shown in Equation (28). The fitted curves (Equations (27) and (28)) were inverses of 

each other, as expected. 

  The rotation angles that were estimated from the processed user intended tendon 

motion signal in Table 21 were used as an input to control the robotic finger.  These 

angles from the third 70º trial were converted to A/D counts using Equation (28), and 

were shown in Table 25 and Figure 70.  

The angles from the third 70º trial that were converted to A/D counts in the 

previous section were entered into a lookup table on the robot’s LabVIEWTM software. 

The robotic finger’s software interprets this data and rotated to the specified locations 

with SMA actuation. Once the robot’s PIP flexion was completed, a table of A/D counts 

over the joint’s range of motion was produced from LabVIEWTM. Using Equation (27), 

these counts were converted back to rotation angle for comparison. The resulting A/D 

counts and rotation angles for these trials were displayed in Table 26.  Because of the 
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accumulation of error in calibrating rotation angle to counts, the total rotation angle of the 

robot finger’s output data was estimated as 73.3 degrees. The estimated total angular 

rotation expected was 73.0 degrees from the input data. The main reason for the 

variability in each data set in comparison to the actual rotation was the accumulation of 

error from the calibration technique. Here, rotational position and A/D counts was 

measured inefficiently and inaccurately.  It would be more accurate to use VisualeyezTM 

to measure rotational data as a function of time, with simultaneous measurements of A/D 

counts using the robot’s software. This calibration technique was used in the literature 

more effectively [122].  Furthermore, the operating voltage of the robotic finger was 

increased until it would reach full rotation, and the string was tightened in order to 

improve the rotational rate. In addition, because the robot finger and the human finger all 

rotate at different rates, the slopes from all of the rotation angle vs. time curves will be 

different. A scaling factor was applied to the time data on the x-axis for better 

comparison (Figure 71). The main difference between the curves in Figure 71 is that the 

robot finger took longer to begin rotating and had a different angular acceleration rate in 

the middle and end region in comparison the Minimum Jerk or proposed method’s data. 

This was mainly due to the mechanical issues of the robot finger. For example, due to the 

quality of the SMA actuators, the finger takes longer to begin rotating and will have a 

different rotation rate. Also, the artificial tendon string used on the robot finger has 

tension problems at the higher rotation angles. It is also important to note that the robotic 

finger has been broken and repaired several times. Previous performance testing of the 

robot before the accidents demonstrated increased accuracy because it followed the 

Minimum Jerk model more closely [122]. Alternatively, a linear encoder can be used on 

the robot finger which will allow for the direct input of the estimated tendon excursions 

vs. time determined by the proposed method. This will increase the accuracy by 

eliminating the need to translate the estimated excursions into rotation angles using an 

accepted model. Overall, the curves in Figure 71 were comparable and demonstrate the 

successful use of control from the new sensing method.  
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Chapter 10 
 
Conclusion and Future Works 

 
The human hand is perhaps the most dexterous device that is quite daunting to 

mechanically replicate. Rarely can mechanical parts go un-serviced for many years like 

the human hand usually does. Hands can heal themselves, work in many weather 

conditions and touch things with delicate care or overpower rugged rocks. Consequently, 

because hands get injured and diseased, engineers design wearable robots to supplement 

the patient’s disability. Even though the most sophisticated of robotic hands do not 

replace the exquisite natural hand mechanism, several wearable devices throughout 

history were created. Current wearable robotic technologies that are designed as an 

assistive device have limited usability, thus inspiring a new approach to sensing and 

control in this thesis. 

The primary goal of the research presented in this thesis was to introduce a novel 

sensing strategy using Pulsed-Wave (PW) Doppler ultrasound for detecting user intended 

hand grasping. This new bio-sensing strategy is developed here specifically for the 

application of hand exoskeleton motion for disabled patients with some residual hand 

control.  The successful feasibility study presented in this thesis shows that PW Doppler 

can accurately measure the small velocity and displacements of a moving string, beef 

tendon and human biological tendon. Furthermore, the signal from a moving human 

tendon is shown to control a robotic finger. In addition, real-time Doppler data access 

from an ultrasound machine is possible by using the audio output. This presents an 

inexpensive way to obtain Doppler data access which otherwise wouldn’t be possible. 

Overall, the processed audio has also been shown to be more accurate than the ultrasound 

scanner’s software-based results in all cases.  

        In particular, the following objectives have been successfully addressed in this 

thesis: 

1) To determine the difficulties in the current strategies to sense user intention for bio-

robotic control, based on a thorough literature review.
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2) To identify the anatomical and functional capabilities of a healthy hand in order to 

determine an optimal sensing strategy to restore some of the motor abilities in 

disabled patients. 

3) To develop an original sensing strategy using Pulsed-Wave (PW) Doppler ultrasound 

to detect the velocity and displacement of a moving tendon in the wrist for the 

eventual use on an assistive exoskeleton. 

4) To develop a signal processing technique to test the feasibility of this new bio-sensing 

method. 

5) To perform three experiments in order to test the accuracy of the new signal 

processing technique. These experiments include:  

(i) accurately measuring the small velocity and displacements of a moving string,  

(ii) accurately measuring the small velocity and displacements of a moving beef 

tendon, and   

(iii) accurately measuring the small velocity and displacements of a human biological 

tendon and demonstrating the control of a robotic finger test-bed using the acquired 

measurements. 

 

The primary areas of emerging science explored here is the successful detection 

of user intention and the control of a bio-robotic device. Although this initial proof of 

principle demonstrates significant feasibility, there is room for an improved study. 

Primarily, the human and robotic PIP joint rotations in the final experiment should be 

monitored by an external motion tracking system. The processing method proposed in 

this thesis can also be improved by investigating other digital signal processing methods. 

This includes an improved method of noise removal as well as improving the frequency 

resolution by using other techniques like Wavelet Transforms [125]. The overall accuracy 

of the proposed sensing and processing technique should also be estimated. This is where 

an open-ended research based ultrasound machine like UltraSonix 500 RP TM (Ultrasonix 

Medical Corporation) would be useful [126]. Using such a system will allow for raw data 

access at any stage, and the algorithm or other system protocols can be tested for 

accuracy.   
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After the initial feasibility of this sensing strategy is improved, a 

portable/wearable prototype design will be implemented. This next stage includes an 

exoskeleton mechanism for the finger, an improved data acquisition board, piezoelectric 

devices, and improved software to allow for real-time acquisition and control. 

Overall, the proven ability to detect tendon motion with PW Doppler ultrasound 

has significant academic contributions to current research in bio-robotic control and other 

medical sciences. For example, hand surgeons have interest in the post-operative 

conditions of tendons in order to quantify excursions. Most clinicians and researchers 

presently use inaccurate methods such as goniometers for non-invasive measurements. 

The proposed algorithm presented in this thesis has shown to accurately quantify such 

measurements and can replace existing methods. Also, many areas of research require 

raw Doppler data from affordable commercial ultrasound machines. The proposed 

processing method that was presented in this thesis will allow access to the demodulated 

Doppler shift signals through the audio output of a soundcard. Researchers can then test 

their processing algorithms or filter designs on these signals and compare them to the 

output of the scanner. Most importantly, the new sensing and processing technique that 

was presented in this thesis has demonstrated feasibility for bio-robotic control. This new 

sensing method using Pulsed Wave Doppler to detect tendon motion has the ability to 

replace existing techniques using EMG sensing. This is because there are several 

different tendon sites in which Doppler shift data can be acquired from. Being able to 

obtain more information from the human user will directly correlate to the sophistication 

and the degrees-of freedom of the robotic device. Overall, the research presented here has 

contributed to current research in several areas and has the ability to expand in technique 

and applications for future works involving exoskeleton control.  
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